Generative Adversarial Networks (GANs) & Restricted Boltzmann Machines (RBMs)

Lecture 23

Changho Suh

October 7, 2021

Outline

1. Figure out Boltzmann Machine (BM) and then RBM.

2. Study how RBM can serve as a generative model.

3. Study a couple of concepts regarding RBM.

Boltzmann Machine (BM)

Represent relationship between nodes often via edges.

Suppose: All of the hidden and visible units are arbitrarily correlated.

Boltzmann Machine (BM)

The above picture captures such arbitrary distribution:

 $\mathbb{P}(h, v)$

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Restricted Boltzmann Machine (RBM)

RBM is a simplified BM in which there is no edge within hidden units as well as within visible units.

Representation of RBM

Usually it is represented a **bipartite** graph.

Property of RBM

Given the visible units, hidden units are independent:

$$
\mathbb{P}(h|v) = \prod_{i=1}^{d} \mathbb{P}(h_i|v)
$$

Copyright © 2021 Changho Suh @

Property of RBM

Main role of RBM

Can serve as a **generative model**.

When only the visible units are available, can generate hidden units via $\prod \mathbb{P}(h_i|v)$. $i=1$

Use of RBMs in practice

Probability distribution in RBMs?

In RBM, the description of probability distribution requires one important concept:

Energy

Energy

Energy is a key function that determines the probability distribution.

It is denoted by $E(v, h)$ and defined such that:

$$
\mathbb{P}(v,h) = \frac{e^{-E(v,h)}}{Z} \quad \text{where } Z = \sum_{v} \sum_{h} e^{-E(v,h)}
$$

Interpretation:

Lower energy \rightarrow more stable \rightarrow more probable

Energy of visible units

$$
\mathbb{P}(v) = \sum_{h} \mathbb{P}(v, h)
$$
 total probability law
=
$$
\sum_{h} \frac{e^{-E(v, h)}}{Z}
$$

Wish to find energy of v , say $F(v)$, such that

$$
\mathbb{P}(v) = \sum_{h} \frac{e^{-E(v,h)}}{Z} = \frac{e^{-F(v)}}{Z}
$$

$$
F(v) = -\log\left(\sum_{h} e^{-E(v,h)}\right)
$$
 called "Free Energy".

How can RBM serve as a generative model?

How to compute:
$$
\mathbb{P}(h|v) = \prod_{i=1}^{d} \mathbb{P}(h_i|v)?
$$

In RBM, we define $E(v, h)$ as:

bias w.r.t. visible units $\in \mathbb{R}^n$ bias w.r.t. hidden units weight matrix

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Computation of $\mathbb{P}(h|v) = \prod \mathbb{P}(h_i|v)?$ $i = 1$

$$
E(v, h) := -b^T v - c^T h - h^T W v
$$

$$
\mathbb{P}(v, h) = \frac{e^{-E(v, h)}}{Z}
$$

$$
\mathbb{P}(h|v) = \frac{\mathbb{P}(v, h)}{\mathbb{P}(v)} = \frac{\mathbb{P}(v, h)}{\sum_h \mathbb{P}(v, h)} = \frac{e^{-E(v, h)}}{\sum_h e^{-E(v, h)}}
$$

$$
= \frac{e^{b^T v + c^T h + h^T W v}}{\sum_h e^{b^T v + c^T h + h^T W v}}
$$

$$
= \frac{e^{c^T h + h^T W v}}{\prod_{i=1}^d e^{c_i h_i + h_i W_i v}}
$$

 $\,d$

$$
= \frac{1}{\sum_{h} e^{c^{T}h + h^{T}Wv}} = \frac{4\mathbf{1}v}{\sum_{h} e^{c^{T}h + h^{T}Wv}} \qquad W = \left[\begin{array}{c} W_{i} \\ | \end{array} \right]
$$

\boldsymbol{d} **Binary case:** $\mathbb{P}(h|v) = \prod \mathbb{P}(h_i|v)?$ $i = 1$

$$
\mathbb{P}(h_i|v) \sim e^{c_i h_i + h_i W_i v}
$$

$$
\mathbb{P}(h_i = 1|v) \sim e^{c_i + W_i v}
$$

$$
\mathbb{P}(h_i=0|v) \sim e^0
$$

$$
\mathbb{P}(h_i = 1|v) = \frac{e^{c_i + W_i v}}{1 + e^{c_i + W_i v}}
$$

$$
= \frac{1}{1 + e^{-c_i - W_i v}} = \sigma(c_i + W_i v)
$$

Conditional probabilities

$$
\begin{aligned}\n\mathbb{P}(h|v) &= \frac{e^{c^T h + h^T W v}}{\sum_h e^{c^T h + h^T W v}} \\
\mathbb{P}(h_i = 1|v) &= \sigma(c_i + W_i v) \\
\mathbb{P}(v|h) &= \frac{e^{b^T v + v^T W^T h}}{\sum_v e^{b^T v + v^T W^T h}} \\
\mathbb{P}(v_i = 1|h) &= \sigma(b_i + [W^T]_i h)\n\end{aligned}
$$

To compute this, need to figure out:

$$
\theta := (W, b, c) \quad \text{parameters}
$$

How to train parameters θ ?

Look ahead

Will study how to train RBM.