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Recap: Autoencoder
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Recap: Autoencoder

1. Nai_ve method

2. Standard method

3. Standard method with tying weights
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Recap: Roles of autoencoder

1. Encoder: Dimensionality reduction

2. Encoder: Semi-supervised learning

3. Decoder: A generative model (with a random input )
4. Matrix completion

5. Anomaly detection
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Recap: Coding for autoencoder

from tensorflow.keras.models import Model

from tensorflow.keras.layers 1mport Dense, Input
4 N
Inputs = Input (shape = (784, ))

x = Dense (128, activation = 'relu') (Inputs )

X = Dense (64, activation = 'relu') (x)

Lencoded = Dense (32, activation = 'relu') (x) )
x = Dense (64, activation = 'relu') (encoded)

X = Dense (128, activation = 'relu') (x)

Outputs = Dense (784, activation = 'sigmoid') (x)
AutoEncoder = Model (Inputs , Outputs )

encoder

decoder

AutoEncoder.compile (loss=‘binary crossentropy',optimizer =‘adam’)

AutoEncoder.fit (X train, X train, epochs=20)
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Recap: Matrix completion

1.0125| * 1.0125]0.5
1.5 * |01 > 1.51-2.11 0.1
* 12505 20125(0.5

Plays a significant role in estimating missing entries
that is often needed in fusion learning.

Studied an AE-based matrix completion method.
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Recap: Coding for matrix completion

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input

input = Input (shape=(610,))
4 , . . N

x = Dense (128, activation='relu') (input )

X = Dense (64, activation='relu') (x) enCOder
\‘encoded = Dense (32, activation='relu') (x) Y
r'x = Dense (64, activation='relu') (encoded) )

x = Dense (128, activation='relu') (x) deCOder
\‘output_= Dense (610) (x) y

Autoencoder = Model (input , output )
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Recap: Coding for matrix completion

a set of observed entries

l

# Customize an MSE loss function on (i, j) €

\

(zgi'masked_mse(y_true, y pred):
mask = tensorflow.cast(y true!=0,dtype=tf.float32)

loss = keras.backend.square (mask* (y pred - y true))

loss = keras.backend.mean (loss)

\\» return loss AJ/

Autoencoder.compile (optimizer = 'adam', loss = masked mse)

Autoencoder.fit (rating matrix, rating matrix, epochs=10)
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Next topics?

Note: Autoencoder can serve as a generative model.

There is a more powerful generative model based on:
Generative Adversarial Networks (GANSs)

Prior to GANs, a classical method was often employed:

Restricted Boltzmann Machines (RBMs)
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Outline of today’s lecture

Will explore GANs & RBMs in depth:

1. Investigate the GAN architecture together with its
rationale.

2. Study a corresponding opt. and how to solve it.
3. Figure out Boltzmann Machine (BM) and then RBM.

4. Study how RBM can serve as a generative model.

5. Study a couple of concepts regarding RBM.

6. Explore a training method for RBM.



Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Focus of Lecture 22

Will explore GANs & RBMs in depth:

1. Investigate the GAN architecture together with its h
rationale.
. Study a corresponding opt. and how to solve it. y

2
3.
4
)

6.

Figure out Boltzmann Machine (BM) and then RBM.

. Study how RBM can serve as a generative model.

. Study a couple of concepts regarding RBM.

Explore a training method for RBM.

10
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A generative model

A model that generates fake data which has a similar
distribution as that of real data.

/

random generative
input model

R

real data

— fake data

11
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Generative Adversarial Networks  Soodelowetal

real

X

or

7 — Generator |, ¥
G(-) generated

Role: Discriminate real from generated fake samples

Intend to yield a large D(-) if the input is real data;
asmall D(-) forgenerated data. |,
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A reasonable interpretation on D(-)

real

X

or

7 — Generator |, ¥
G(-) generated

Probability of the input being real:
D(- ) =P((-) = real)

13



A reasonable interpretation on D(-)

real

X

or

7 — Generator |, ¥
G(-) generated

Probability of the input being real:
+ D(X)=P(X =real) =

~ ~

1
I D(X)=P(X =real) =0

14
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Optimization?

real {z(9}7m,

or

7 — Generator |, ¥ |
G(-) | generated {0y

Discriminator wishes to maximize: D(X) & 1 — D(X')
A natural optimization:

= . L — .
2 (6)y 4 _ D70
mgxm;ma: )+m;1 D(z¥)

15
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Log loss

real

X

or

7 — Generator |, ¥
G(-) generated

Goodfellow employed log loss instead:
1 — . 1 — .
— logD(z) + = log(1 — D(z®
H%Xﬂléﬂ(w;($ )4-WL£;<%( (@)

16
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Optimization

real

X

or

7 — Generator B
G(-) generated

L 1 « P R
Discriminator: max—» logD(z")+ — » log(1—D(z""))
z—l z 1

— logD(x () ] 1_D~(i)
Generator: min Z 0g )+ — Z og(1— D(z"))

=1 1=1 G(Z(z)) 17
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Optimization

4 )

B ZlogD (z)) +log(1 — D(G(=")))

\_ J

Question: How to solve?

Note: function optimization!

18
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Neural net optimization

4 )

BB SR 7 Dok D) + log(1 — DG

\_ J

Take function class as neural networks.

And then parameterize them:

Gw(') DQ(’)

19
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Optimization with parameters (w,6)

4 )

1 m - '
j — Y log Dg(x'") + log(1 — Dy(Gu (2"
min max — 2 og Dg(z\") + log( 0(Gw(2'")))

w 0

\_ J

Question: How to deal with min-max?

20
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Theorem

. )
fl m | R
mui)n max |~ 2; log Do (") +log(1 — Dy(G(2)))
=
\
Suppose:

J(w, @) convexin w
J(w, @) concavein ¢

- The saddle point is
the optimal solution.



joker1251
Game Theory의 해는 이렇게 Saddle Point에 위치한다.
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J(w,0) convex-concave?

~ ) )
mui)n max % Z log Dg (")) + log(1 — Dg (G (2'7)))
\ = J(w,@) /

No! In general, it is highly non-convex in w
and highly non-concave in ¢

22
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What can we do then?

~ ) )
mui)n max % Z log Dg (")) + log(1 — Dg (G (2'7)))
\ = J(w,@) /

Nonetheless: Find a stationary point such that
Vud(w™,0%) =0, VoJ(w™,0%) =0

Hope: Such point yields a near optimal performance.
Turns out: It is often the case in reality.

23
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How to find a stationary point?

~ ) )
mui)n max % Z log Dg (")) + log(1 — Dg (G (2'7)))
\ = J(w,@) /

One practical method.:

Alternating gradient descent

24



Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Alternating gradient descent

1. Update Generator’s weight:

wY — w® — 0, vV, J(w?, §0)

2. Given (w9 . update Discriminator’s weight:

ot+1) . ()

asVoJ (w! D) 9)

may repeat k times

3. Repeat the above.

25
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k:1 alternating gradient descent

1. Update Generator’s weight:
wtt) ) — ozlva(w(t), H(t'k))

2. Update Discriminator’s weight k times:
for i=1:k

glLrk+i)  gltk+i=1) L 7, J (D), gltk+i=1))

3. Repeat the above.

In practice: Often use Batch version & Adam.

26
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A practical tip on Generator

Given Discriminator’s parameter 0 :
1 . .
min — ) "log Dy (z'")) + log(1 — Dp(G.,(2")))

. 1€EBN—r ——
irrelevant of w
Suffice to consider: “generator loss” .
1 .
min| — Z log(l — DG(Gw(Z(Z))))
w |mp “
S 1eB J

In practice, consider a proxy:
1 |
min — Z —log Dy (G, (2(9))

womB s

27
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Look ahead

1. Figure out Boltzmann Machine (BM) and then RBM.

2. Study how RBM can serve as a generative model.

28



