
Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

TexPoint fonts used in EMF.

Changho Suh

October 7, 2021

Generative Adversarial Networks (GANs) &
Restricted Boltzmann Machines (RBMs)

Lecture 22

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Recap: Autoencoder

1

hidden 1

hidden 2 hidden 2’

hidden 1’

encoder decoder

internal
features

ReLU

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Recap: Autoencoder

2

2.

1.

3.

Naive method

Standard method

Standard method with tying weights

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Recap: Roles of autoencoder

3

2.

1.

3.

Encoder: Dimensionality reduction

Encoder: Semi-supervised learning

Decoder: A generative model (with a random input)

4. Matrix completion

5. Anomaly detection

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Recap: Coding for autoencoder

4

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input

Inputs_ = Input(shape = (784,))

x = Dense(64, activation = 'relu')(encoded)
x = Dense(128, activation = 'relu')(x)
Outputs_ = Dense(784, activation = 'sigmoid')(x)

AutoEncoder.fit(X_train, X_train, epochs=20)

AutoEncoder.compile(loss=‘binary_crossentropy',optimizer =‘adam’)

AutoEncoder = Model(Inputs_, Outputs_)

encoderx = Dense(128, activation = 'relu')(Inputs_)

x = Dense(64, activation = 'relu')(x)

encoded = Dense(32, activation = 'relu')(x)

decoder

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Recap: Matrix completion

5

1.0 2.5 *

1.5 * 0.1

* 2.5 0.5

1.0 2.5 0.5

1.5 -2.1 0.1

2.0 2.5 0.5

Plays a significant role in estimating missing entries
that is often needed in fusion learning.

Studied an AE-based matrix completion method.

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Recap: Coding for matrix completion

6

from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.models import Model

input_ = Input(shape=(610,))

x = Dense(128, activation='relu')(input_)

x = Dense(64, activation='relu')(x)

encoded = Dense(32, activation='relu')(x)

x = Dense(64, activation='relu')(encoded)

x = Dense(128, activation='relu')(x)

output_= Dense(610)(x)

Autoencoder = Model(input_, output_)

encoder

decoder

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Recap: Coding for matrix completion

7

loss = keras.backend.mean(loss)

Autoencoder.fit(rating_matrix, rating_matrix, epochs=10)

Autoencoder.compile(optimizer = 'adam', loss = masked_mse)

Customize an MSE loss function on

def masked_mse(y_true, y_pred):

mask = tensorflow.cast(y_true!=0,dtype=tf.float32)

loss = keras.backend.square(mask*(y_pred - y_true))

return loss

a set of observed entries

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Next topics?

8

Note: Autoencoder can serve as a generative model.

There is a more powerful generative model based on:

Generative Adversarial Networks (GANs)

Prior to GANs, a classical method was often employed:

Restricted Boltzmann Machines (RBMs)

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Outline of today’s lecture

9

Will explore GANs & RBMs in depth:

1.

2.

3.

Investigate the GAN architecture together with its
rationale.

Study a corresponding opt. and how to solve it.

Figure out Boltzmann Machine (BM) and then RBM.

4.

5.

Study how RBM can serve as a generative model.

Study a couple of concepts regarding RBM.

6. Explore a training method for RBM.

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Focus of Lecture 22

10

Will explore GANs & RBMs in depth:

1.

2.

3.

Investigate the GAN architecture together with its
rationale.

Study a corresponding opt. and how to solve it.

Figure out Boltzmann Machine (BM) and then RBM.

4.

5.

Study how RBM can serve as a generative model.

Study a couple of concepts regarding RBM.

6. Explore a training method for RBM.

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

A generative model

11

A model that generates fake data which has a similar
distribution as that of real data.

generative
model

real data

fake datarandom
input

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Generative Adversarial Networks

12

Goodfellow et al.
NeurIPS14

Discriminator

real

generated
Generator

or

Role: Discriminate real from generated fake samples

Intend to yield a large if the input is real data;
a small for generated data.

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

A reasonable interpretation on

13

Probability of the input being real:

Discriminator

real

generated
Generator

or

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

A reasonable interpretation on

14

Probability of the input being real:

Discriminator

real

generated
Generator

or

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Optimization?

15

Discriminator wishes to maximize: &
A natural optimization:

Discriminator

real

generated
Generator

or

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

16

Log loss

Goodfellow employed log loss instead:

Discriminator

real

generated
Generator

or

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

17

Optimization

Discriminator

real

Discriminator:

generated

Generator:

Generator

or

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Optimization

18

Note: function optimization!

Question: How to solve?

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Neural net optimization

19

Take function class as neural networks.

And then parameterize them:

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Optimization with parameters

20

Question: How to deal with min-max?

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Theorem

21

convex in
concave in

saddle point

Suppose:

à The saddle point is
the optimal solution.

joker1251
Game Theory의 해는 이렇게 Saddle Point에 위치한다.

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

convex-concave?

22

No! In general, it is highly non-convex in
and highly non-concave in

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

What can we do then?

23

Nonetheless: Find a stationary point such that

Hope: Such point yields a near optimal performance.
Turns out: It is often the case in reality.

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

How to find a stationary point?

24

One practical method:

Alternating gradient descent

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Alternating gradient descent

25

1. Update Generator’s weight:

2. Given update Discriminator’s weight:

3. Repeat the above.

may repeat k times

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

k:1 alternating gradient descent

26

1. Update Generator’s weight:

2. Update Discriminator’s weight k times:

3. Repeat the above.

In practice: Often use Batch version & Adam.

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

A practical tip on Generator

27

Given Discriminator’s parameter :

irrelevant of
Suffice to consider:

In practice, consider a proxy:

“generator loss”

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Look ahead

28

Figure out Boltzmann Machine (BM) and then RBM.

Study how RBM can serve as a generative model.

1.

2.

