Generative Adversarial Networks (GANs) & Restricted Boltzmann Machines (RBMs)

Lecture 22

Changho Suh

October 7, 2021

Recap: Autoencoder

Recap: Autoencoder

- 1. Naive method
- 2. Standard method
- 3. Standard method with tying weights

Recap: Roles of autoencoder

- 1. Encoder: Dimensionality reduction
- 2. Encoder: Semi-supervised learning
- 3. Decoder: A generative model (with a random input)
- 4. Matrix completion
- 5. Anomaly detection

Recap: Coding for autoencoder

AutoEncoder = Model(Inputs_, Outputs_)

AutoEncoder.compile(loss=`binary_crossentropy',optimizer =`adam')

AutoEncoder.fit(X_train, X_train, epochs=20)

Recap: Matrix completion

Plays a significant role in estimating missing entries that is often needed in fusion learning.

Studied an AE-based matrix completion method.

Recap: Coding for matrix completion

```
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input
input_ = Input(shape=(610,))
```

```
x = Dense(128, activation='relu')(input_)
```

```
x = Dense(64, activation='relu')(x)
```

```
encoded = Dense(32, activation='relu')(x)
```

```
x = Dense(64, activation='relu') (encoded)
```

```
x = Dense(128, activation='relu')(x)
```

```
output = Dense(610)(x)
```

Autoencoder = Model(input_, output_)

encoder

decoder

Recap: Coding for matrix completion

a set of observed entries

Customize an MSE loss function on $(i, j) \in \Omega$

def masked_mse(y_true, y_pred):
 mask = tensorflow.cast(y_true!=0,dtype=tf.float32)
 loss = keras.backend.square(mask*(y_pred - y_true))
 loss = keras.backend.mean(loss)
 return loss

Autoencoder.compile(optimizer = 'adam', loss = masked_mse)
Autoencoder.fit(rating_matrix, rating_matrix, epochs=10)

Next topics?

Note: Autoencoder can serve as a generative model.

There is a more powerful generative model based on:

Generative Adversarial Networks (GANs)

Prior to GANs, a classical method was often employed:

Restricted Boltzmann Machines (**RBMs**)

Outline of today's lecture

Will explore GANs & RBMs in depth:

- 1. Investigate the GAN architecture together with its rationale.
- 2. Study a corresponding opt. and how to solve it.
- 3. Figure out Boltzmann Machine (BM) and then RBM.
- 4. Study how RBM can serve as a generative model.
- 5. Study a couple of concepts regarding RBM.
- 6. Explore a training method for RBM.

Focus of Lecture 22

Will explore GANs & RBMs in depth:

- 1. Investigate the GAN architecture together with its rationale.
- 2. Study a corresponding opt. and how to solve it.
- 3. Figure out Boltzmann Machine (BM) and then RBM.
- 4. Study how RBM can serve as a generative model.
- 5. Study a couple of concepts regarding RBM.
- 6. Explore a training method for RBM.

A generative model

A model that generates fake data which has a similar distribution as that of real data.

Generative Adversarial Networks

Goodfellow et al. NeurIPS14

Role: Discriminate real from generated fake samples Intend to yield a large $D(\cdot)$ if the input is real data; a small $D(\cdot)$ for generated data.

A reasonable interpretation on $D(\cdot)$

Probability of the input being real:

$$D(\cdot) = \mathbb{P}((\cdot) = \text{real})$$

A reasonable interpretation on $D(\cdot)$

Probability of the input being real:

$$\uparrow \quad D(X) = \mathbb{P}(X = \text{real}) = 1$$
$$\downarrow \quad D(\tilde{X}) = \mathbb{P}(\tilde{X} = \text{real}) = 0$$

Optimization?

Discriminator wishes to maximize: D(X) & 1 - D(X)A natural optimization:

$$\max_{D} \frac{1}{m} \sum_{i=1}^{m} D(x^{(i)}) + \frac{1}{m} \sum_{i=1}^{m} 1 - D(\tilde{x}^{(i)})$$

Log loss

Optimization

Optimization

 $\min_{G(\cdot)} \max_{D(\cdot)} \frac{1}{m} \sum_{i=1}^{m} \log D(x^{(i)}) + \log(1 - D(G(z^{(i)})))$

Question: How to solve?

Note: function optimization!

Neural net optimization

$$\min_{G(\cdot)\in\mathcal{N}}\max_{D(\cdot)\in\mathcal{N}}\frac{1}{m}\sum_{i=1}^{m}\log D(x^{(i)}) + \log(1 - D(G(z^{(i)})))$$

Take function class as neural networks.

And then parameterize them:

$$G_{\boldsymbol{w}}(\cdot) \quad D_{\boldsymbol{\theta}}(\cdot)$$

Optimization with parameters (w, θ)

$$\min_{\boldsymbol{w}} \max_{\boldsymbol{\theta}} \frac{1}{m} \sum_{i=1}^{m} \log D_{\boldsymbol{\theta}}(x^{(i)}) + \log(1 - D_{\boldsymbol{\theta}}(G_{\boldsymbol{w}}(z^{(i)})))$$

Question: How to deal with min-max?

Theorem

$$\min_{\boldsymbol{w}} \max_{\boldsymbol{\theta}} \frac{1}{m} \sum_{i=1}^{m} \log D_{\boldsymbol{\theta}}(x^{(i)}) + \log(1 - D_{\boldsymbol{\theta}}(G_{w}(z^{(i)}))) \\ := J(w, \boldsymbol{\theta})$$

Suppose:

- $J(w, \theta)$ convex in w
- $J(w, \theta)$ concave in θ
- → The saddle point is the optimal solution.

$J(w, \theta)$ convex-concave?

No! In general, it is highly non-convex in w and highly non-concave in θ

What can we do then?

Nonetheless: Find a stationary point such that

$$\nabla_{\boldsymbol{w}} J(\boldsymbol{w}^*, \boldsymbol{\theta}^*) = 0, \ \nabla_{\boldsymbol{\theta}} J(\boldsymbol{w}^*, \boldsymbol{\theta}^*) = 0$$

Hope: Such point yields a near optimal performance. **Turns out:** It is often the case in reality.

How to find a stationary point?

One practical method:

Alternating gradient descent

Alternating gradient descent

1. Update Generator's weight:

$$w^{(t+1)} \leftarrow w^{(t)} - \alpha_1 \nabla_w J(w^{(t)}, \theta^{(t)})$$

2. Given $(w^{(t+1)}, \theta^{(t)})$: update Discriminator's weight:

$$\theta^{(t+1)} \leftarrow \theta^{(t)} + \alpha_2 \nabla_{\theta} J(w^{(t+1)}, \theta^{(t)})$$

may repeat k times

3. Repeat the above.

k:1 alternating gradient descent

1. Update Generator's weight:

$$w^{(t+1)} \leftarrow w^{(t)} - \alpha_1 \nabla_w J(w^{(t)}, \theta^{(t \cdot k)})$$

- 2. Update Discriminator's weight *k* times: for i=1:k $\theta^{(t\cdot k+i)} \leftarrow \theta^{(t\cdot k+i-1)} + \alpha_2 \nabla_{\theta} J(w^{(t+1)}, \theta^{(t\cdot k+i-1)})$
- 3. Repeat the above.

In practice: Often use Batch version & Adam.

A practical tip on Generator

In practice, consider a *proxy*:

$$\min_{\boldsymbol{w}} \frac{1}{m_{\mathcal{B}}} \sum_{i \in \mathcal{B}} -\log D_{\boldsymbol{\theta}}(G_{\boldsymbol{w}}(z^{(i)}))$$

Look ahead

1. Figure out Boltzmann Machine (BM) and then RBM.

2. Study how RBM can serve as a generative model.