Generative Adversarial Networks (GANs) & Restricted Boltzmann Machines (RBMs)

Lecture 22

Changho Suh

October 7, 2021

Recap: Autoencoder

Recap: Autoencoder

- 1. Naive method
- 2. Standard method
- 3. Standard method with tying weights

Recap: Roles of autoencoder

- 1. Encoder: Dimensionality reduction
- 2. Encoder: Semi-supervised learning
- 3. Decoder: A generative model (with a random input)
- 4. Matrix completion
- 5. Anomaly detection

Recap: Coding for autoencoder

AutoEncoder = Model(Inputs_, Outputs_)

AutoEncoder.compile(loss='binary crossentropy',optimizer ='adam')

AutoEncoder.fit(X train, X train, epochs=20)

Recap: Matrix completion

Plays a significant role in estimating missing entries that is often needed in fusion learning.

Studied an AE-based matrix completion method.

Recap: Coding for matrix completion

```
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.models import Model
input = Input(shape=(610,))
```

```
x = Dense(128, activation='relu')(input)
```

```
x = Dense(64, activation='relu')(x)
```

```
encoded = Dense(32, activation='relu')(x)
```

```
x = Dense(64, activation='relu')(encoded)
```

```
x = Dense(128, activation='relu')(x)
```

```
output = Dense(610)(x)
```
Autoencoder = Model(input, output)

encoder

decoder

Recap: Coding for matrix completion

a set of observed entries

Customize an MSE loss function on $(i, j) \in \Omega$

loss = keras.backend.mean(loss) def **masked mse**(y true, y pred): $mask$ = tensorflow.cast(y true!=0,dtype=tf.float32) $loss$ = keras.backend.square(mask*(y pred - y true)) return loss

Autoencoder.fit(rating matrix, rating matrix, epochs=10) Autoencoder.compile(optimizer = 'adam', **loss = masked_mse**)

Next topics?

Note: Autoencoder can serve as a generative model.

There is a more powerful generative model based on:

Generative Adversarial Networks (**GANs**)

Prior to GANs, a classical method was often employed:

Restricted Boltzmann Machines (**RBMs**)

Outline of today's lecture

Will explore GANs & RBMs in depth:

- 1. Investigate the GAN architecture together with its rationale.
- 2. Study a corresponding opt. and how to solve it.
- 3. Figure out Boltzmann Machine (BM) and then RBM.
- 4. Study how RBM can serve as a generative model.
- 5. Study a couple of concepts regarding RBM.
- 6. Explore a training method for RBM.

Focus of Lecture 22

Will explore GANs & RBMs in depth:

- 1. Investigate the GAN architecture together with its rationale.
- 2. Study a corresponding opt. and how to solve it.
- 3. Figure out Boltzmann Machine (BM) and then RBM.
- 4. Study how RBM can serve as a generative model.
- 5. Study a couple of concepts regarding RBM.
- 6. Explore a training method for RBM.

A generative model

A model that generates fake data which has a similar distribution as that of real data.

Generative Adversarial Networks

Goodfellow et al. NeurIPS14

12

Role: Discriminate real from generated fake samples Intend to yield a large $D(\cdot)$ if the input is real data; a small $D(\cdot)$ for generated data.

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

A reasonable interpretation on

Probability of the input being real:

$$
D(\cdot\)=\mathbb{P}((\cdot)=\text{real})
$$

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

A reasonable interpretation on

Probability of the input being real:

$$
\begin{array}{ll} \uparrow & D(X) = \mathbb{P}(X = \text{real}) = 1 \\ \downarrow & D(\tilde{X}) = \mathbb{P}(\tilde{X} = \text{real}) = 0 \end{array}
$$

Optimization?

Log loss

Optimization

Optimization

 $\min_{G(\cdot)} \max_{D(\cdot)} \frac{1}{m} \sum_{i=1}^{m} \log D(x^{(i)}) + \log(1 - D(G(z^{(i)})))$

Question: How to solve?

Note: function optimization!

Neural net optimization

$$
\begin{cases} \min_{G(\cdot) \in \mathcal{N}} \max_{D(\cdot) \in \mathcal{N}} \frac{1}{m} \sum_{i=1}^{m} \log D(x^{(i)}) + \log(1 - D(G(z^{(i)}))) \end{cases}
$$

Take function class as neural networks.

And then parameterize them:

$$
G_w(\cdot) \quad D_\theta(\cdot)
$$

Optimization with parameters (w, θ)

$$
\left(\min_{w} \max_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log D_{\theta}(x^{(i)}) + \log(1 - D_{\theta}(G_w(z^{(i)})))\right)
$$

Question: How to deal with min-max?

Copyright © 2021 Changho Suh @

Theorem

Suppose:

 $J(w,\theta)$ convex in w $J(w, \theta)$ concave in θ

 \rightarrow The saddle point is the optimal solution.

$J(w, \theta)$ convex-concave?

No! In general, it is highly non-convex in w and highly non-concave in θ

What can we do then?

Nonetheless: Find a stationary point such that

$$
\nabla_w J(w^*, \theta^*) = 0, \ \nabla_{\theta} J(w^*, \theta^*) = 0
$$

Hope: Such point yields a near optimal performance. **Turns out:** It is often the case in reality.

How to find a stationary point?

One practical method:

Alternating gradient descent

Alternating gradient descent

1. Update Generator's weight:

$$
w^{(t+1)} \leftarrow w^{(t)} - \alpha_1 \nabla_w J(w^{(t)}, \theta^{(t)})
$$

2. Given $(w^{(t+1)}, \theta^{(t)})$: update Discriminator's weight:

$$
\theta^{(t+1)} \leftarrow \theta^{(t)} + \alpha_2 \nabla_{\theta} J(w^{(t+1)}, \theta^{(t)})
$$

may repeat *k* times

3. Repeat the above.

*k***:1 alternating gradient descent**

1. Update Generator's weight:

$$
w^{(t+1)} \leftarrow w^{(t)} - \alpha_1 \nabla_w J(w^{(t)}, \theta^{(t \cdot k)})
$$

2. Update Discriminator's weight *k* times:

$$
\begin{aligned} &\texttt{for}\;\; \texttt{i=1:k} \\ &\theta^{(t\cdot k+i)} \leftarrow \theta^{(t\cdot k+i-1)} + \alpha_2 \nabla_\theta J(w^{(t+1)}, \theta^{(t\cdot k+i-1)}) \end{aligned}
$$

3. Repeat the above.

In practice: Often use Batch version & Adam.

A practical tip on Generator

In practice, consider a *proxy*:

$$
\min_{w} \frac{1}{m_{\mathcal{B}}} \sum_{i \in \mathcal{B}} -\log D_{\theta}(G_w(z^{(i)}))
$$

Look ahead

1. Figure out Boltzmann Machine (BM) and then RBM.

2. Study how RBM can serve as a generative model.