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Recap: Autoencoder
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Recap: Autoencoder

2

2. 

1. 

3. 

Naive method

Standard method

Standard method with tying weights
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Recap: Roles of autoencoder

3

2. 

1. 

3. 

Encoder: Dimensionality reduction

Encoder: Semi-supervised learning

Decoder: A generative model (with a random input )

4. Matrix completion

5. Anomaly detection
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Recap: Coding for autoencoder

4

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input

Inputs_ = Input(shape = (784, ))

x = Dense(64, activation = 'relu')(encoded)
x = Dense(128, activation = 'relu')(x)
Outputs_ = Dense(784, activation = 'sigmoid')(x)

AutoEncoder.fit(X_train, X_train, epochs=20)

AutoEncoder.compile(loss=‘binary_crossentropy',optimizer =‘adam’)

AutoEncoder = Model(Inputs_, Outputs_)

encoderx = Dense(128, activation = 'relu')(Inputs_)

x = Dense(64, activation = 'relu')(x)

encoded = Dense(32, activation = 'relu')(x)

decoder
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Recap: Matrix completion

5
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Plays a significant role in estimating missing entries 
that is often needed in fusion learning.

Studied an AE-based matrix completion method.
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Recap: Coding for matrix completion

6

from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.models import Model

input_ = Input(shape=(610,))

x = Dense(128, activation='relu')(input_)

x = Dense(64, activation='relu')(x)

encoded = Dense(32, activation='relu')(x)

x = Dense(64, activation='relu')(encoded)

x = Dense(128, activation='relu')(x)

output_= Dense(610)(x)

Autoencoder = Model(input_, output_)

encoder

decoder
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Recap: Coding for matrix completion

7

loss = keras.backend.mean(loss)

Autoencoder.fit(rating_matrix, rating_matrix, epochs=10)

Autoencoder.compile(optimizer = 'adam', loss = masked_mse)

# Customize an MSE loss function on

def masked_mse(y_true, y_pred):

mask = tensorflow.cast(y_true!=0,dtype=tf.float32)

loss = keras.backend.square(mask*(y_pred - y_true))

return loss

a set of observed entries
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Next topics?

8

Note: Autoencoder can serve as a generative model. 

There is a more powerful generative model based on:

Generative Adversarial Networks (GANs)

Prior to GANs, a classical method was often employed:

Restricted Boltzmann Machines (RBMs)
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Outline of today’s lecture

9

Will explore GANs & RBMs in depth:

1. 

2. 

3. 

Investigate the GAN architecture together with its 
rationale.

Study a corresponding opt. and how to solve it.

Figure out Boltzmann Machine (BM) and then RBM.

4. 

5. 

Study how RBM can serve as a generative model.

Study a couple of concepts regarding RBM.

6. Explore a training method for RBM.
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Focus of Lecture 22 

10

Will explore GANs & RBMs in depth:

1. 

2. 

3. 

Investigate the GAN architecture together with its 
rationale.

Study a corresponding opt. and how to solve it.

Figure out Boltzmann Machine (BM) and then RBM.

4. 

5. 

Study how RBM can serve as a generative model.

Study a couple of concepts regarding RBM.

6. Explore a training method for RBM.
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A generative model

11

A model that generates fake data which has a similar 
distribution as that of real data.

generative 
model

real data

fake datarandom 
input
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Generative Adversarial Networks

12

Goodfellow et al. 
NeurIPS14

Discriminator

real

generated
Generator

or

Role: Discriminate real from generated fake samples

Intend to yield a large if the input is real data;
a small for generated data.
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A reasonable interpretation on 

13

Probability of the input being real:

Discriminator

real

generated
Generator

or
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A reasonable interpretation on 

14

Probability of the input being real:

Discriminator

real

generated
Generator

or
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Optimization?

15

Discriminator wishes to maximize: &
A natural optimization:

Discriminator

real

generated
Generator

or
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16

Log loss

Goodfellow employed log loss instead:

Discriminator

real

generated
Generator

or
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17

Optimization

Discriminator

real

Discriminator:

generated

Generator:

Generator

or
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Optimization

18

Note: function optimization!

Question: How to solve?



Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Neural net optimization

19

Take function class as neural networks.

And then parameterize them:
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Optimization with parameters 

20

Question: How to deal with min-max?
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Theorem

21

convex in
concave in

saddle point

Suppose:

à The saddle point is 
the optimal solution. 

joker1251
Game Theory의 해는 이렇게 Saddle Point에 위치한다.
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convex-concave?

22

No! In general, it is highly non-convex in     
and highly non-concave in 
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What can we do then?

23

Nonetheless: Find a stationary point such that

Hope: Such point yields a near optimal performance.
Turns out: It is often the case in reality.
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How to find a stationary point?

24

One practical method:

Alternating gradient descent
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Alternating gradient descent

25

1. Update Generator’s weight:

2. Given                      update Discriminator’s weight:

3. Repeat the above.

may repeat k times
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k:1 alternating gradient descent

26

1. Update Generator’s weight:

2. Update Discriminator’s weight k times:

3. Repeat the above.

In practice: Often use Batch version & Adam.
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A practical tip on Generator

27

Given Discriminator’s parameter    :

irrelevant of 
Suffice to consider:

In practice, consider a proxy:

“generator loss”
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Look ahead

28

Figure out Boltzmann Machine (BM) and then RBM.

Study how RBM can serve as a generative model.

1. 

2. 


