Generative Adversarial Networks (GANs) & Restricted Boltzmann Machines (RBMs)

Practice Session

Soobin Um

October 7, 2021

Outline of today's session

1. Restricted Boltzmann Machines (RBMs)

Recap

Coding

2. Generative Adversarial Networks (GANs)

Recap

Coding

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Restricted Boltzmann Machines

Recap

Boltzmann Machine (BM)

This captures arbitrary distribution between hidden and visible units:

$$\mathbb{P}(h,v)$$

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Restricted Boltzmann Machine (RBM)

A simplified BM

No edge within hidden units as well as within visible units.

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

How can RBM serve as a generative model?

When only the visible units are available, can generate hidden units via

 $\mathbb{P}(h|v)$

Question

How to obtain such $\mathbb{P}(h|v)$?

To this end: Introduce a function that determines probabilities

Energy

$$\mathbb{P}(v,h) = \frac{e^{-E(v,h)}}{Z} \quad \text{where } Z = \sum_{v} \sum_{h} e^{-E(v,h)}$$

Interpretation:

Low energy \rightarrow more probable

Energy of visible units

Wish to find energy of v, say F(v), such that

$$\mathbb{P}(v) = \sum_{h} \frac{e^{-E(v,h)}}{Z} = \frac{e^{-F(v)}}{Z}$$

$$F(v) = -\log\left(\sum_{h} e^{-E(v,h)}\right)$$

Called "Free Energy".

(or, simply the energy of $\,v\,$)

How to parameterize energy

In RBM, we define E(v,h) as:

$$E(v,h) := -b^T v - c^T h - h^T W v$$

$$\boldsymbol{\theta} := (W, b, c) \quad \text{parameters}$$

Parameterized conditional probabilities

$$\mathbb{P}(h|v) = \frac{e^{c^{T}h + h^{T}Wv}}{\sum_{h} e^{c^{T}h + h^{T}Wv}} \qquad \begin{array}{l} \text{Binary case:} \\ \mathbb{P}(h|v) = \frac{e^{b^{T}v + v^{T}W^{T}h}}{\sum_{v} e^{b^{T}v + v^{T}W^{T}h}} \qquad \mathbb{P}(h_{i} = 1|v) = \sigma(c_{i} + W_{i}v) \\ \mathbb{P}(v_{i} = 1|h) = \sigma(b_{i} + [W^{T}]_{i}h) \end{array}$$

How to find good parameters θ ?

by training!

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Training procedure
$$\theta := (W, b, c)$$

Given visible units with mexamples: $\{v^{(i)}\}_{i=1}^{m}$

Step 1: Sample $h^{(t),(i)} \sim \mathbb{P}(h|v^{(t),(i)}) \quad \forall i \in \{1, \dots, m\}$ **Step 2:** Sample $v^{(t),(i)} \sim \mathbb{P}(v|h^{(t),(i)}) \quad \forall i \in \{1, \dots, m\}$ **Step 3:** Compute a cost function: $J^{(t)}(\theta)$ **Step 4:** Update parameters via gradient descent: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \alpha^{(t)} \nabla J^{(t)}(\theta)$

Loss function $\ell(v^{(i)}, v^{(t),(i)})$?

Turns out: The following loss is optimal in a certain sense:

$$\ell_{\text{opt}}(v, \hat{v}) = F(v) - F(\hat{v})$$

free energy
where $F(v) = -\log\left(\sum_{h} e^{-E(v,h)}\right);$
 $E(v,h) := -b^T v - c^T h - h^T W v.$

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Coding

Task: Generative modeling

Recall:

When only the visible units are available, can generate hidden units.

Code: Define a simple RBM model

from sklearn.neural_network import BernoulliRBM

Code: Training the RBM model

from sklearn.neural_network import BernoulliRBM

rbm = BernoulliRBM(n_components=100, learning rate=0.01)

 $rbm.fit(X train) \longrightarrow learn theta = (W,b,c)$

Step 1: Sample $h^{(t),(i)} \sim \mathbb{P}(h|v^{(t),(i)}) \quad \forall i \in \{1, \dots, m\}$ Step 2: Sample $v^{(t),(i)} \sim \mathbb{P}(v|h^{(t),(i)}) \quad \forall i \in \{1, \dots, m\}$ Step 3: Compute a cost function: $J^{(t)}(\theta)$ Step 4: Update parameters via gradient descent: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \alpha^{(t)} \nabla J^{(t)}(\theta)$

Code: Compute $\mathbb{P}(h|v)$

from sklearn.neural network import BernoulliRBM

rbm = BernoulliRBM(n_components=100, learning rate=0.01)

 $rbm.fit(X train) \longrightarrow learn theta = (W,b,c)$

Code: Compute Free energy of $\, \upsilon \,$

from sklearn.neural network import BernoulliRBM

rbm = BernoulliRBM(n components=100, learning rate=0.01)

 $rbm.fit(X train) \longrightarrow learn theta = (W,b,c)$

x_latent=rbm.**transform(**X_train)
$$\uparrow$$
Compute the hidden layer probabilities: $\mathbb{P}(h_i = 1 | v)$

rbm.score_samples(X_train) Compute Free energy w.r.t. X_train:

$$\propto F(v) = -\log\left(\sum_{h} e^{-E(v,h)}\right) \qquad E(v,h) := -b^{T}v - c^{T}h - h^{T}Wv$$

$$\mathbf{X}_{train}$$
¹⁸

Code: Gibbs Sampling

from sklearn.neural network import BernoulliRBM

rbm = BernoulliRBM(n components=100, learning rate=0.01)

 $rbm.fit(X train) \longrightarrow learn theta = (W,b,c)$

```
x_latent=rbm.transform(X_train)
\uparrow
Compute the hidden layer probabilities: \mathbb{P}(h_i = 1 | v)
```

rbm.score_samples(X_train) Compute Free energy of X_train: F(v)

X hat = rbm.gibbs(X train[:100])

 $\begin{array}{ccc} \mathbf{X_train} & \longrightarrow & \mathbf{h} & \longrightarrow & \mathbf{X_hat} & (sampled) \\ \mathbb{P}(h|v) & & \mathbb{P}(v|h) \end{array}$

Comparison: Original vs. sampling

5	0	Ч	1	9	2	١	3	1	4	.	0	ŝ.	1	4	2		3		4
3	5	3	6	1	1	Э	8	6	9	Ś.	منبع و	3	4	ÿ	7		3	6	9
ч	Ø	9	1	1	г	4	3	2	7	4	Ó	9	1	4	X	4			1
З	8	6	9	0	5	6	0	7	6	÷.	Ŧ	6	1	0	5	6	Ø	4	6
1	8	1	9	3	9	8	5	3	3		8	4	9	3	4	8	5	5	3
3	0	7	4	9	8	0	9	4	1	ŝ	0	74	9	4	2	0	9	4	1
4	4	6	Ø	4	5	6	7	0	0		¥	6	O	4		6	1		Ø
1	7)	6	3	0	2	1	1	1	Š.	7	1	6	3	ð	2	1	Ĵ	1
9	0	9	6	7	8	3	9	Ô	4	õ	0	4	4	7	8		4	0	4
6	7	4	6	8	0	7	8	3	1	6	1	4	6	Ţ	Ø	7	¥	3	1

X_train

X_hat

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Generative Adversarial Networks

Recap

A generative model

A model that generates fake data which has a similar distribution as that of real data.

Generative Adversarial Networks

Goodfellow et al. NeurIPS14

Role: Discriminate real from generated fake samples Intend to yield a large $D(\cdot)$ if the input is real data; a small $D(\cdot)$ for generated data.

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

A reasonable interpretation on $D(\cdot)$

Probability of the input being real:

$$D(\cdot) = \mathbb{P}((\cdot) = \text{real})$$

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

A reasonable interpretation on $D(\cdot)$

Probability of the input being real:

$$\uparrow \quad D(X) = \mathbb{P}(X = \text{real}) = 1$$
$$\downarrow \quad D(\tilde{X}) = \mathbb{P}(\tilde{X} = \text{real}) = 0$$

Optimization? Log loss!

Optimization for GAN

Neural net optimization

$$\min_{G(\cdot)\in\mathcal{N}}\max_{D(\cdot)\in\mathcal{N}}\frac{1}{m}\sum_{i=1}^{m}\log D(x^{(i)}) + \log(1 - D(G(z^{(i)})))$$

Take function class as neural networks.

And then parameterize them:

$$G_{\boldsymbol{w}}(\cdot) \quad D_{\boldsymbol{\theta}}(\cdot)$$

How to deal with min-max

Find a stationary point such that

$$\nabla_{\boldsymbol{w}} J(\boldsymbol{w}^*, \boldsymbol{\theta}^*) = 0, \ \nabla_{\boldsymbol{\theta}} J(\boldsymbol{w}^*, \boldsymbol{\theta}^*) = 0$$

Turns out: Such point often yields a near optimal performance in reality.

One practical method:

Alternating gradient descent

k:1 alternating gradient descent

1. Update Generator's weight:

$$w^{(t+1)} \leftarrow w^{(t)} - \alpha_1 \nabla_w J(w^{(t)}, \theta^{(t \cdot k)})$$

2. Update Discriminator's weight *k* times:

for i=1:k
$$\theta^{(t \cdot k+i)} \leftarrow \theta^{(t \cdot k+i-1)} + \alpha_2 \nabla_{\theta} J(w^{(t+1)}, \theta^{(t \cdot k+i-1)})$$

3. Repeat the above.

In practice: Often use Batch version & Adam.

A practical tip on Generator

Given Discriminator's parameter θ :

$$\min_{\boldsymbol{w}} \frac{1}{m} \sum_{i=1}^{m} \log D_{\boldsymbol{\theta}}(x^{(i)}) + \log(1 - D_{\boldsymbol{\theta}}(G_{\boldsymbol{w}}(z^{(i)})))$$

irrelevant of \boldsymbol{w}

Suffice to consider:

$$\min_{\boldsymbol{w}} \frac{1}{m} \sum_{i=1}^{m} \log(1 - D_{\boldsymbol{\theta}}(G_{\boldsymbol{w}}(z^{(i)})))$$

In practice, consider a *proxy*:

$$\min_{\boldsymbol{w}} \frac{1}{m} \sum_{i=1}^m -\log D_{\boldsymbol{\theta}}(G_{\boldsymbol{w}}(z^{(i)}))$$

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Coding

Task

Generate MNIST-like images.

Code: Data Normalization

from tensorflow.keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x train = x train.reshape(-1,28*28) / 127.5 - 1

x test = x test.reshape(-1,28*28) / 127.5 - 1 # Normalize data in [-1, 1]

Model for Generator

Leaky ReLU

Leaky ReLU(x) =
$$\begin{cases} x & \text{if } x \ge 0; \\ \text{negative slope} \times x & \text{otherwise.} \end{cases}$$

Code: Generator

```
from tensorflow.keras.layers import Dense, BatchNormalization, LeakyReLU
from tensorflow.keras.models import Sequential
```

```
generator = Sequential()
generator.add(Dense(128, input dim=100))
generator.add(BatchNormalization())
generator.add (LeakyReLU(0.2))
generator.add (Dense (256))
generator.add(BatchNormalization())
generator.add(LeakyReLU(0.2))
generator.add(Dense(512))
generator.add(BatchNormalization())
generator.add(LeakyReLU(0.2))
generator.add (Dense (1024))
generator.add(BatchNormalization())
generator.add(LeakyReLU(0.2))
generator.add(28*28, activation=`tanh')
```

Model for Discriminator

Code: Discriminator

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LeakyReLU, Dropout
discriminator = Sequential()
discriminator.add(Dense(1024, input shape=(784,)))
discriminator.add(LeakyReLU(0.2))
discriminator.add (Dropout (0.3))
discriminator.add (Dense (512))
discriminator.add(LeakyReLU(0.2))
discriminator.add (Dropout (0.3))
discriminator.add (Dense (256))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dense(1, activation='sigmoid'))
```

Which loss function for training?

Recall: Discriminator optimization

$$\max_{\boldsymbol{\theta}} \frac{1}{m} \sum_{i=1}^{m} \log D_{\boldsymbol{\theta}}(x^{(i)}) + \log(1 - D_{\boldsymbol{\theta}}(G_w(z^{(i)})))$$

This reminds us: Cross entropy (CE) loss!

$$l_{\mathsf{CE}}(y, \hat{y}) := -y \log \hat{y} - (1 - y) \log (1 - \hat{y})$$

An equivalent form:

$$\max_{\boldsymbol{\theta}} \frac{1}{m} \sum_{i=1}^{m} -l_{\mathsf{CE}}(\mathbf{1}, D_{\boldsymbol{\theta}}(x^{(i)})) - l_{\mathsf{CE}}(\mathbf{0}, D_{\boldsymbol{\theta}}(G_{\boldsymbol{w}}(z^{(i)})))$$

Code: Discriminator

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LeakyReLU, Dropout
discriminator = Sequential()
discriminator.add(Dense(1024, input shape=(784,)))
discriminator.add(LeakyReLU(0.2))
discriminator.add (Dropout (0.3))
discriminator.add(Dense(512))
discriminator.add(LeakyReLU(0.2))
discriminator.add (Dropout (0.3))
discriminator.add (Dense (256))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dense(1, activation='sigmoid'))
```

discriminator.compile(loss='binary_crossentropy', optimizer='adam')

Recall: Generator optimization (the proxy)

$$\min_{\boldsymbol{w}} \frac{1}{m} \sum_{i=1}^{m} -\log D_{\theta}(G_{\boldsymbol{w}}(z^{(i)}))$$

Should examine discriminator outputs!

To implement this: Construct an integrated model only for training the generator

An equivalent form using the CE loss:

$$\min_{\boldsymbol{w}} \frac{1}{m} \sum_{i=1}^{m} l_{\mathsf{CE}}(\mathbf{1}, D_{\theta}(G_{\boldsymbol{w}}(z^{(i)})))$$

Code: Generator + Discriminator

from tensorflow.keras.models import Model

discriminator.trainable = False

gan_input = Input(shape=(100,))

x = generator(inputs=gan input)

output = discriminator(x)

GAN = Model(gan input, output)

GAN.compile(loss='binary crossentropy', optimizer='adam')

Code: Alternating gradient descent (k=1)

$$\begin{split} & \text{Update discriminator weights} \quad \max_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log D_{\theta}(x^{(i)}) + \log(1 - D_{\theta}(G_w(z^{(i)}))) \\ & \text{noise = np.random.uniform(-1, 1, size=[BATCH_SIZE, 100])} \\ & \text{generated_images = generator.predict(noise)} \quad \text{# fake image generation} \\ & \text{x_dis = np.concatenate([real_images, generated_images])} \\ & \text{y_dis = np.zeros(2 * BATCH_SIZE)} \\ & \text{y_dis[:BATCH_SIZE] = 1} \\ & \text{discriminator.train_on_batch(x_dis, y_dis)} \end{split}$$

Generated images

Generator outputs

