
Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Soobin Um

October 7, 2021

Generative Adversarial Networks (GANs) &

Restricted Boltzmann Machines (RBMs)

Practice Session



Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Outline of today’s session

1

1. Restricted Boltzmann Machines (RBMs)

2. Generative Adversarial Networks (GANs)

Recap

Coding

Recap

Coding
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Boltzmann Machine (BM)

4

hidden units visible units

This captures arbitrary distribution between hidden

and visible units:
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Restricted Boltzmann Machine (RBM)

5

hidden units visible units

A simplified BM

No edge within hidden units as well as within 

visible units.
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How can RBM serve as a generative model?

6

hidden units visible units

When only the visible units are available, can

generate hidden units via
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Question

7

How to obtain such              ?

To this end: Introduce a function that determines 

probabilities

Energy

Interpretation:

Low energy  more probable
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Energy of visible units

8

Wish to find energy of   , say        , such that  

Called “Free Energy”.

(or, simply the energy of     )
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How to parameterize energy

9

In RBM, we define              as:

parameters  
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Parameterized conditional probabilities

10

Binary case:

How to find good parameters    ? 

by training!
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Training procedure

11

Given visible units with m

examples:

Sample Step 1:

Step 2: Sample 

Step 3: Compute a cost function:

Step 4: Update parameters via gradient descent:
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Loss function                      ?

12

Turns out: The following loss is optimal in a certain 

sense:

free energy
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Task: Generative modeling

14

MNIST data

visible units hidden units 

RBM

When only the visible units are available, can

generate hidden units.

Recall:
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Code: Define a simple RBM model

15

rbm = BernoulliRBM(n_components=100, learning_rate=0.01)

from sklearn.neural_network import BernoulliRBM

Dim of hidden units 

100
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Code: Training the RBM model

16

rbm = BernoulliRBM(n_components=100, learning_rate=0.01)

from sklearn.neural_network import BernoulliRBM

rbm.fit(X_train) learn theta = (W,b,c)

Sample Step 1:

Step 2: Sample 

Step 3: Compute a cost function:

Step 4: Update parameters via gradient descent:
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Code: Compute

17

rbm = BernoulliRBM(n_components=100, learning_rate=0.01)

from sklearn.neural_network import BernoulliRBM

rbm.fit(X_train)

x_latent=rbm.transform(X_train) 

Compute the hidden layer probabilities:

learn theta = (W,b,c)

X_train n_components
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Code: Compute Free energy of

18

rbm = BernoulliRBM(n_components=100, learning_rate=0.01)

from sklearn.neural_network import BernoulliRBM

rbm.fit(X_train)

x_latent=rbm.transform(X_train) 

rbm.score_samples(X_train) Compute Free energy w.r.t. X_train:

Compute the hidden layer probabilities:

learn theta = (W,b,c)

X_train
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Code: Gibbs Sampling

19

rbm = BernoulliRBM(n_components=100, learning_rate=0.01)

from sklearn.neural_network import BernoulliRBM

rbm.fit(X_train)

x_latent=rbm.transform(X_train) 

rbm.score_samples(X_train) Compute Free energy of X_train:

Compute the hidden layer probabilities:

learn theta = (W,b,c)

X_hat = rbm.gibbs(X_train[:100])

X_train h X_hat (sampled)
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20

Comparison: Original vs. sampling

X_train X_hat
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Generative Adversarial Networks
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A generative model

23

A model that generates fake data which has a similar 

distribution as that of real data.

generative 

model

real data

fake datarandom 

input
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Generative Adversarial Networks

24

Goodfellow et al. 

NeurIPS14

Discriminator

real

generated

Generator

or

Role: Discriminate real from generated fake samples

Intend to yield a large if the input is real data;

a small for generated data.
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A reasonable interpretation on 

25

Probability of the input being real:

Discriminator

real

generated

Generator

or
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A reasonable interpretation on 

26

Probability of the input being real:

Discriminator

real

generated

Generator

or
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Optimization?

27

Discriminator wishes to maximize: &

Discriminator

real

generated

Generator

or

Goodfellow employed log loss:

Log loss!
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28

Optimization for GAN

Discriminator

real

Discriminator:

generated

Generator:

Generator

or
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Neural net optimization

29

Take function class as neural networks.

And then parameterize them:
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How to deal with min-max

30

Find a stationary point such that

Turns out: Such point often yields a near optimal 

performance in reality.

One practical method:

Alternating gradient descent
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k:1 alternating gradient descent

31

1. Update Generator’s weight:

2. Update Discriminator’s weight k times:

3. Repeat the above.

In practice: Often use Batch version & Adam.
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A practical tip on Generator

32

Given Discriminator’s parameter    :

irrelevant of 

Suffice to consider:

In practice, consider a proxy:



Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

TexPoint fonts used in EMF. 

Coding



Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Task

34

Generate MNIST-like images.

Generator
A random 

signal

MNIST dataset
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Code: Data Normalization

35

from tensorflow.keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(-1,28*28)/ 127.5 - 1

x_test = x_test.reshape(-1,28*28)/ 127.5 - 1 # Normalize data in [-1, 1]
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Model for Generator

36

100 128

256

512

1024
784

LeakyReLU tanh

latent signal

dim = 100
BN
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Leaky ReLU

37
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Code: Generator

38

from tensorflow.keras.layers import Dense, BatchNormalization, LeakyReLU

from tensorflow.keras.models import Sequential

generator = Sequential()

generator.add(Dense(128,input_dim=100))

generator.add(BatchNormalization())

generator.add(LeakyReLU(0.2))

generator.add(Dense(256))

generator.add(BatchNormalization())

generator.add(LeakyReLU(0.2))

generator.add(Dense(512))

generator.add(BatchNormalization())

generator.add(LeakyReLU(0.2))

generator.add(Dense(1024))

generator.add(BatchNormalization())

generator.add(LeakyReLU(0.2))

generator.add(28*28, activation=‘tanh’)
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Model for Discriminator

39

256

512

784

LeakyReLU

logistic

1

1024

Dropout
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Code: Discriminator

40

discriminator.add(Dense(1 , activation=‘sigmoid’))

discriminator = Sequential()

discriminator.add(Dense(1024 , input_shape=(784,)))

discriminator.add(Dense(512))

discriminator.add(Dense(256))

from tensorflow.keras.models import Sequential

discriminator.add(LeakyReLU(0.2))

discriminator.add(LeakyReLU(0.2))

discriminator.add(LeakyReLU(0.2))

discriminator.add(Dropout(0.3))

from tensorflow.keras.layers import Dense, LeakyReLU, Dropout 

discriminator.add(Dropout(0.3))

Which loss function for training?
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Recall: Discriminator optimization

41

This reminds us: Cross entropy (CE) loss!

An equivalent form:



Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Discriminator

42

discriminator.add(Dense(1 , activation=‘sigmoid’))

discriminator = Sequential()

discriminator.add(Dense(1024 , input_shape=(784,)))

discriminator.add(Dense(512))

discriminator.add(Dense(256))

from tensorflow.keras.models import Sequential

discriminator.add(LeakyReLU(0.2))

discriminator.add(LeakyReLU(0.2))

discriminator.add(LeakyReLU(0.2))

discriminator.add(Dropout(0.3))

from tensorflow.keras.layers import Dense, LeakyReLU, Dropout 

discriminator.add(Dropout(0.3))

discriminator.compile(loss='binary_crossentropy', optimizer='adam')
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Recall: Generator optimization (the proxy)

43

Should examine discriminator outputs!

To implement this: Construct an integrated model 

only for training the generator

An equivalent form using the CE loss:
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Code: Generator + Discriminator

44

output = discriminator(x)

GAN = Model(gan_input, output)

discriminator.trainable = False

gan_input = Input(shape=(100,))

x = generator(inputs=gan_input)

GAN.compile(loss='binary_crossentropy', optimizer='adam')

from tensorflow.keras.models import Model

generator  
(fixed)

GAN

discriminatorgan_input output_
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Code: Alternating gradient descent (k=1)

45

noise = np.random.uniform(-1, 1, size=[BATCH_SIZE,100])

y_fake = np.ones(BATCH_SIZE)

GAN.train_on_batch(noise, y_fake)

noise = np.random.uniform(-1, 1, size=[BATCH_SIZE, 100])

generated_images = generator.predict(noise)

x_dis = np.concatenate([real_images, generated_images])

y_dis = np.zeros(2 * BATCH_SIZE)

y_dis[:BATCH_SIZE] = 1

discriminator.train_on_batch(x_dis, y_dis)

Update generator weights

# fake image generation

# fake labels

Update discriminator weights
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46

Generated images

Generator outputs


