
Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Soobin Um

October 7, 2021

Generative Adversarial Networks (GANs) &

Restricted Boltzmann Machines (RBMs)

Practice Session

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Outline of today’s session

1

1. Restricted Boltzmann Machines (RBMs)

2. Generative Adversarial Networks (GANs)

Recap

Coding

Recap

Coding

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

TexPoint fonts used in EMF.

Restricted Boltzmann Machines

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

TexPoint fonts used in EMF.

Recap

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Boltzmann Machine (BM)

4

hidden units visible units

This captures arbitrary distribution between hidden

and visible units:

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Restricted Boltzmann Machine (RBM)

5

hidden units visible units

A simplified BM

No edge within hidden units as well as within

visible units.

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

How can RBM serve as a generative model?

6

hidden units visible units

When only the visible units are available, can

generate hidden units via

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Question

7

How to obtain such ?

To this end: Introduce a function that determines

probabilities

Energy

Interpretation:

Low energy  more probable

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Energy of visible units

8

Wish to find energy of , say , such that

Called “Free Energy”.

(or, simply the energy of)

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

How to parameterize energy

9

In RBM, we define as:

parameters

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Parameterized conditional probabilities

10

Binary case:

How to find good parameters ?

by training!

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Training procedure

11

Given visible units with m

examples:

Sample Step 1:

Step 2: Sample

Step 3: Compute a cost function:

Step 4: Update parameters via gradient descent:

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Loss function ?

12

Turns out: The following loss is optimal in a certain

sense:

free energy

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

TexPoint fonts used in EMF.

Coding

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Task: Generative modeling

14

MNIST data

visible units hidden units

RBM

When only the visible units are available, can

generate hidden units.

Recall:

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Define a simple RBM model

15

rbm = BernoulliRBM(n_components=100, learning_rate=0.01)

from sklearn.neural_network import BernoulliRBM

Dim of hidden units

100

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Training the RBM model

16

rbm = BernoulliRBM(n_components=100, learning_rate=0.01)

from sklearn.neural_network import BernoulliRBM

rbm.fit(X_train) learn theta = (W,b,c)

Sample Step 1:

Step 2: Sample

Step 3: Compute a cost function:

Step 4: Update parameters via gradient descent:

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Compute

17

rbm = BernoulliRBM(n_components=100, learning_rate=0.01)

from sklearn.neural_network import BernoulliRBM

rbm.fit(X_train)

x_latent=rbm.transform(X_train)

Compute the hidden layer probabilities:

learn theta = (W,b,c)

X_train n_components

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Compute Free energy of

18

rbm = BernoulliRBM(n_components=100, learning_rate=0.01)

from sklearn.neural_network import BernoulliRBM

rbm.fit(X_train)

x_latent=rbm.transform(X_train)

rbm.score_samples(X_train) Compute Free energy w.r.t. X_train:

Compute the hidden layer probabilities:

learn theta = (W,b,c)

X_train

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Gibbs Sampling

19

rbm = BernoulliRBM(n_components=100, learning_rate=0.01)

from sklearn.neural_network import BernoulliRBM

rbm.fit(X_train)

x_latent=rbm.transform(X_train)

rbm.score_samples(X_train) Compute Free energy of X_train:

Compute the hidden layer probabilities:

learn theta = (W,b,c)

X_hat = rbm.gibbs(X_train[:100])

X_train h X_hat (sampled)

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

20

Comparison: Original vs. sampling

X_train X_hat

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

TexPoint fonts used in EMF.

Generative Adversarial Networks

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

TexPoint fonts used in EMF.

Recap

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

A generative model

23

A model that generates fake data which has a similar

distribution as that of real data.

generative

model

real data

fake datarandom

input

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Generative Adversarial Networks

24

Goodfellow et al.

NeurIPS14

Discriminator

real

generated

Generator

or

Role: Discriminate real from generated fake samples

Intend to yield a large if the input is real data;

a small for generated data.

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

A reasonable interpretation on

25

Probability of the input being real:

Discriminator

real

generated

Generator

or

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

A reasonable interpretation on

26

Probability of the input being real:

Discriminator

real

generated

Generator

or

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Optimization?

27

Discriminator wishes to maximize: &

Discriminator

real

generated

Generator

or

Goodfellow employed log loss:

Log loss!

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

28

Optimization for GAN

Discriminator

real

Discriminator:

generated

Generator:

Generator

or

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Neural net optimization

29

Take function class as neural networks.

And then parameterize them:

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

How to deal with min-max

30

Find a stationary point such that

Turns out: Such point often yields a near optimal

performance in reality.

One practical method:

Alternating gradient descent

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

k:1 alternating gradient descent

31

1. Update Generator’s weight:

2. Update Discriminator’s weight k times:

3. Repeat the above.

In practice: Often use Batch version & Adam.

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

A practical tip on Generator

32

Given Discriminator’s parameter :

irrelevant of

Suffice to consider:

In practice, consider a proxy:

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

TexPoint fonts used in EMF.

Coding

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Task

34

Generate MNIST-like images.

Generator
A random

signal

MNIST dataset

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Data Normalization

35

from tensorflow.keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(-1,28*28)/ 127.5 - 1

x_test = x_test.reshape(-1,28*28)/ 127.5 - 1 # Normalize data in [-1, 1]

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Model for Generator

36

100 128

256

512

1024
784

LeakyReLU tanh

latent signal

dim = 100
BN

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Leaky ReLU

37

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Generator

38

from tensorflow.keras.layers import Dense, BatchNormalization, LeakyReLU

from tensorflow.keras.models import Sequential

generator = Sequential()

generator.add(Dense(128,input_dim=100))

generator.add(BatchNormalization())

generator.add(LeakyReLU(0.2))

generator.add(Dense(256))

generator.add(BatchNormalization())

generator.add(LeakyReLU(0.2))

generator.add(Dense(512))

generator.add(BatchNormalization())

generator.add(LeakyReLU(0.2))

generator.add(Dense(1024))

generator.add(BatchNormalization())

generator.add(LeakyReLU(0.2))

generator.add(28*28, activation=‘tanh’)

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Model for Discriminator

39

256

512

784

LeakyReLU

logistic

1

1024

Dropout

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Discriminator

40

discriminator.add(Dense(1 , activation=‘sigmoid’))

discriminator = Sequential()

discriminator.add(Dense(1024 , input_shape=(784,)))

discriminator.add(Dense(512))

discriminator.add(Dense(256))

from tensorflow.keras.models import Sequential

discriminator.add(LeakyReLU(0.2))

discriminator.add(LeakyReLU(0.2))

discriminator.add(LeakyReLU(0.2))

discriminator.add(Dropout(0.3))

from tensorflow.keras.layers import Dense, LeakyReLU, Dropout

discriminator.add(Dropout(0.3))

Which loss function for training?

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Recall: Discriminator optimization

41

This reminds us: Cross entropy (CE) loss!

An equivalent form:

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Discriminator

42

discriminator.add(Dense(1 , activation=‘sigmoid’))

discriminator = Sequential()

discriminator.add(Dense(1024 , input_shape=(784,)))

discriminator.add(Dense(512))

discriminator.add(Dense(256))

from tensorflow.keras.models import Sequential

discriminator.add(LeakyReLU(0.2))

discriminator.add(LeakyReLU(0.2))

discriminator.add(LeakyReLU(0.2))

discriminator.add(Dropout(0.3))

from tensorflow.keras.layers import Dense, LeakyReLU, Dropout

discriminator.add(Dropout(0.3))

discriminator.compile(loss='binary_crossentropy', optimizer='adam')

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Recall: Generator optimization (the proxy)

43

Should examine discriminator outputs!

To implement this: Construct an integrated model

only for training the generator

An equivalent form using the CE loss:

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Generator + Discriminator

44

output = discriminator(x)

GAN = Model(gan_input, output)

discriminator.trainable = False

gan_input = Input(shape=(100,))

x = generator(inputs=gan_input)

GAN.compile(loss='binary_crossentropy', optimizer='adam')

from tensorflow.keras.models import Model

generator
(fixed)

GAN

discriminatorgan_input output_

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Code: Alternating gradient descent (k=1)

45

noise = np.random.uniform(-1, 1, size=[BATCH_SIZE,100])

y_fake = np.ones(BATCH_SIZE)

GAN.train_on_batch(noise, y_fake)

noise = np.random.uniform(-1, 1, size=[BATCH_SIZE, 100])

generated_images = generator.predict(noise)

x_dis = np.concatenate([real_images, generated_images])

y_dis = np.zeros(2 * BATCH_SIZE)

y_dis[:BATCH_SIZE] = 1

discriminator.train_on_batch(x_dis, y_dis)

Update generator weights

fake image generation

fake labels

Update discriminator weights

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

46

Generated images

Generator outputs

