Generative Adversarial Networks (GANs) & Restricted Boltzmann Machines (RBMs)

Practice Session

Soobin Um

October 7, 2021

Outline of today's session

1. **Restricted Boltzmann Machines (RBMs)**

Recap

Coding

2. **Generative Adversarial Networks (GANs)**

Recap

Coding

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Restricted Boltzmann Machines

Recap

Boltzmann Machine (BM)

This captures arbitrary distribution between hidden and visible units:

$$
\mathbb{P}(h,v)
$$

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Restricted Boltzmann Machine (RBM)

A simplified BM

No edge within hidden units as well as within visible units.

How can RBM serve as a generative model?

When only the visible units are available, can **generate hidden units** via

 $\mathbb{P}(h|v)$

Question

How to obtain such $\mathbb{P}(h|v)$?

To this end: Introduce a function that determines probabilities

Energy

$$
\mathbb{P}(v,h) = \frac{e^{-E(v,h)}}{Z} \quad \text{where } Z = \sum_{v} \sum_{h} e^{-E(v,h)}
$$

Interpretation:

Low energy \rightarrow more probable

Energy of visible units

Wish to find energy of v , say $F(v)$, such that

$$
\mathbb{P}(v) = \sum_{h} \frac{e^{-E(v,h)}}{Z} = \frac{e^{-F(v)}}{Z}
$$

$$
F(v) = -\log\left(\sum_{h} e^{-E(v,h)}\right)
$$

Called "**Free Energy**".

(or, simply the energy of v)

How to parameterize energy

In RBM, we define $E(v, h)$ as:

$$
E(v,h):=-b^Tv-c^Th-h^TWv\\
$$

$$
\theta := (W, b, c) \quad \text{parameters}
$$

Parameterized conditional probabilities

$$
\begin{aligned}\n\mathbb{P}(h|v) &= \frac{e^{c^T h + h^T W v}}{\sum_h e^{c^T h + h^T W v}} & \mathbb{P}(h_i = 1|v) = \sigma(c_i + W_i v) \\
\mathbb{P}(v|h) &= \frac{e^{b^T v + v^T W^T h}}{\sum_v e^{b^T v + v^T W^T h}} & \mathbb{P}(v_i = 1|h) = \sigma(b_i + [W^T]_i h)\n\end{aligned}
$$

How to find good parameters θ ?

by training!

Training procedure
$$
\theta := (W, b, c)
$$

Given visible units with *m* examples:

 $\{v^{(i)}\}_{i=1}^m$

Step 1: Sample $h^{(t),(i)} \sim \mathbb{P}(h|v^{(t),(i)})$ $\forall i \in \{1, ..., m\}$ **Step 2:** Sample $v^{(t),(i)} \sim \mathbb{P}(v|h^{(t),(i)}) \quad \forall i \in \{1,\ldots,m\}$ **Step 3:** Compute a cost function: $J^{(t)}(\theta)$ **Step 4:** Update parameters via gradient descent: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \alpha^{(t)} \nabla J^{(t)}(\theta)$

Loss function $\ell\left(v^{(i)}, v^{(t), (i)}\right)$?

Turns out: The following loss is optimal in a certain sense:

$$
\ell_{\text{opt}}(v, \hat{v}) = F(v) - F(\hat{v})
$$

free energy
where $F(v) = -\log \left(\sum_{h} e^{-E(v,h)} \right);$

$$
E(v, h) := -b^T v - c^T h - h^T W v.
$$

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Coding

Task: Generative modeling

Recall:

When only the visible units are available, can **generate hidden units.**

Code: Define a simple RBM model

from sklearn.neural_network import **BernoulliRBM**

rbm = BernoulliRBM(**n_components=100**, learning_rate=0.01) Dim of hidden units

Code: Training the RBM model

from sklearn.neural_network import **BernoulliRBM**

rbm = BernoulliRBM(**n_components=100**, learning_rate=0.01)

rbm.**fit**(X train) \rightarrow learn theta = (W, b, c)

Step 1: Sample **Step 2:** Sample **Step 3:** Compute a cost function: $J^{(t)}(\theta)$ **Step 4:** Update parameters via gradient descent: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \alpha^{(t)} \nabla J^{(t)}(\theta)$

Code: Compute $\mathbb{P}(h|v)$

from sklearn.neural_network import **BernoulliRBM**

```
rbm = BernoulliRBM(n_components=100, learning_rate=0.01)
```
rbm. $fit(X train) \rightarrow learn theta = (W, b, c)$

```
x_latent=rbm.transform(X_train) 
Compute the hidden layer probabilities:
```

$$
\mathbb{P}(h_i = 1|v) = \frac{e^{c_i + W_i v}}{1 + e^{c_i + W_i v}}, \quad i \in \{1, ..., 100\}
$$
\nx_train

Code: Compute Free energy of

from sklearn.neural_network import **BernoulliRBM**

rbm = BernoulliRBM(**n_components=100**, learning_rate=0.01)

rbm. $fit(X train) \rightarrow learn theta = (W, b, c)$

$$
\begin{array}{l}\n\text{x}_\text{latent=rbm}.\text{transform}(\text{x}_\text{train}) \\
\uparrow \\
\text{Compute the hidden layer probabilities: } \mathbb{P}(h_i = 1|v)\n\end{array}
$$

rbm.score samples(X train) Compute Free energy w.r.t. X train:

$$
\propto F(v) = -\log\left(\sum_{h} e^{-E(v,h)}\right) \qquad E(v,h) := -b^T v - c^T h - h^T W v
$$

X train

Code: Gibbs Sampling

from sklearn.neural_network import **BernoulliRBM**

rbm = BernoulliRBM(**n_components=100**, learning_rate=0.01)

rbm. $fit(X train) \rightarrow learn theta = (W, b, c)$

```
x_latent=rbm.transform(X_train) 
Compute the hidden layer probabilities: \mathbb{P}(h_i=1|v)
```
rbm.score_samples(X_train) Compute Free energy of X_train: $F(v)$

X hat = $rbm.\overline{gibbs}(X \text{ train}[:100])$

X_train h X_hat (sampled) $\mathbb{P}(h|v)$ $\mathbb{P}(v|h)$

Comparison: Original vs. sampling

X_train X_hat

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Generative Adversarial Networks

Recap

A generative model

A model that generates fake data which has a similar distribution as that of real data.

Generative Adversarial Networks

Goodfellow et al. NeurIPS14

24

Role: Discriminate real from generated fake samples Intend to yield a large $D(\cdot)$ if the input is real data; a small $D(\cdot)$ for generated data.

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

A reasonable interpretation on

Probability of the input being real:

$$
D(\cdot\; \;)=\mathbb{P}((\cdot)=\mathrm{real})
$$

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

A reasonable interpretation on

Probability of the input being real:

$$
\begin{array}{ll} \uparrow & D(X) = \mathbb{P}(X = \text{real}) = 1 \\ \downarrow & D(\tilde{X}) = \mathbb{P}(\tilde{X} = \text{real}) = 0 \end{array}
$$

Optimization? Log loss!

Optimization for GAN

Neural net optimization

$$
\begin{cases} \min_{G(\cdot) \in \mathcal{N}} \max_{D(\cdot) \in \mathcal{N}} \frac{1}{m} \sum_{i=1}^{m} \log D(x^{(i)}) + \log(1 - D(G(z^{(i)}))) \end{cases}
$$

Take function class as neural networks.

And then parameterize them:

$$
G_w(\cdot) \quad D_\theta(\cdot)
$$

How to deal with min-max

Find a stationary point such that

$$
\nabla_w J(w^*, \theta^*) = 0, \ \nabla_{\theta} J(w^*, \theta^*) = 0
$$

Turns out: Such point often yields a near optimal performance in reality.

One practical method:

Alternating gradient descent

*k***:1 alternating gradient descent**

1. Update Generator's weight:

$$
w^{(t+1)} \leftarrow w^{(t)} - \alpha_1 \nabla_w J(w^{(t)}, \theta^{(t \cdot k)})
$$

2. Update Discriminator's weight *k* times:

$$
\begin{aligned} &\texttt{for}\;\; \texttt{i=1:k} \\ &\theta^{(t\cdot k+i)} \leftarrow \theta^{(t\cdot k+i-1)} + \alpha_2 \nabla_\theta J(w^{(t+1)}, \theta^{(t\cdot k+i-1)}) \end{aligned}
$$

3. Repeat the above.

In practice: Often use Batch version & Adam.

A practical tip on Generator

Given Discriminator's parameter θ :

$$
\min_{w} \frac{1}{m} \sum_{i=1}^{m} \log D_{\theta}(x^{(i)}) + \log(1 - D_{\theta}(G_w(z^{(i)})))
$$
irrelevant of w

Suffice to consider:

$$
\min_{w} \frac{1}{m} \sum_{i=1}^{m} \log(1 - D_{\theta}(G_w(z^{(i)})))
$$

In practice, consider a *proxy*:

$$
\min_{w} \frac{1}{m} \sum_{i=1}^{m} -\log D_{\theta}(G_w(z^{(i)}))
$$

Copyright © 2021 Soobin Um @ KAIST. All rights reserved.

Coding

Task

Generate MNIST-like images.

Code: Data Normalization

from **tensorflow.keras.datasets** import **mnist**

(x train, y train), (x test, y test) = mnist.load data()

x train = x train.reshape(-1,28*28)/ 127.5 - 1

x test = x test.reshape(-1,28*28)/ 127.5 - 1 # Normalize data in [-1, 1]

Model for Generator

Leaky ReLU

Code: Generator

```
from tensorflow.keras.layers import Dense, BatchNormalization, LeakyReLU
from tensorflow.keras.models import Sequential
```

```
generator = Sequential()
generator.add(Dense(128,input_dim=100))
generator.add(BatchNormalization())
generator.add(LeakyReLU(0.2))
generator.add(Dense(256))
generator.add(BatchNormalization())
generator.add(LeakyReLU(0.2))
generator.add(Dense(512))
generator.add(BatchNormalization())
generator.add(LeakyReLU(0.2))
generator.add(Dense(1024))
generator.add(BatchNormalization())
generator.add(LeakyReLU(0.2))
generator.add(28*28, activation='tanh')
```
Model for Discriminator

Code: Discriminator

```
discriminator.add(Dense(1 , activation='sigmoid'))
discriminator = Sequential()
discriminator.add(Dense(1024, input shape=(784,)))
discriminator.add(Dense(512))
discriminator.add(Dense(256))
from tensorflow.keras.models import Sequential
discriminator.add(LeakyReLU(0.2))
discriminator.add(LeakyReLU(0.2))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
from tensorflow.keras.layers import Dense, LeakyReLU, Dropout 
discriminator.add(Dropout(0.3))
```
Which loss function for training?

Recall: Discriminator optimization

$$
\max_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log D_{\theta}(x^{(i)}) + \log(1 - D_{\theta}(G_w(z^{(i)})))
$$

This reminds us: **Cross entropy (CE) loss!**

$$
l_{\mathsf{CE}}(y, \hat{y}) := -y \log \hat{y} - (1-y) \log \left(1 - \hat{y}\right)
$$

An equivalent form:

$$
\max_{\theta} \frac{1}{m} \sum_{i=1}^{m} -l_{\mathsf{CE}}(\mathbf{1}, D_{\theta}(x^{(i)})) - l_{\mathsf{CE}}(\mathbf{0}, D_{\theta}(G_w(z^{(i)})))
$$

Code: Discriminator

```
discriminator.add(Dense(1 , activation='sigmoid'))
discriminator = Sequential()
discriminator.add(Dense(1024, input shape=(784,)))
discriminator.add(Dense(512))
discriminator.add(Dense(256))
from tensorflow.keras.models import Sequential
discriminator.add(LeakyReLU(0.2))
discriminator.add(LeakyReLU(0.2))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
from tensorflow.keras.layers import Dense, LeakyReLU, Dropout 
discriminator.add(Dropout(0.3))
```
discriminator.compile(loss='binary_crossentropy', optimizer='adam')

Recall: Generator optimization (the *proxy***)**

$$
\min_{w} \frac{1}{m} \sum_{i=1}^{m} -\log D_{\theta}(G_w(z^{(i)}))
$$

Should examine discriminator outputs!

To implement this: Construct an integrated model only for training the generator

An equivalent form using the CE loss:

$$
\min_{w} \frac{1}{m} \sum_{i=1}^{m} l_{\mathsf{CE}}(\mathbf{1}, D_{\theta}(G_w(z^{(i)})))
$$

Code: Generator + Discriminator

from **tensorflow.keras.models** import **Model**

discriminator.trainable = False

gan input = Input(shape= $(100,))$

 $x =$ qenerator(inputs=qan input)

 $output = discriminator(x)$

GAN = Model(gan_input, output)

GAN.compile(loss='binary crossentropy', optimizer='adam')

Code: Alternating gradient descent (k=1)

Update discriminator weights	\n $\max_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log D_{\theta}(x^{(i)}) + \log(1 - D_{\theta}(G_w(z^{(i)})))$ \n
\n $\text{noise = np.random.uniform(-1, 1, size = [BATCH_SIZE, 100])}$ \n	
\n $\text{generated_images} = \text{generator.predict} \text{ (noise)} \# \text{fake image generation}$ \n	
\n $x_dis = np.concurrent(\text{real_images, generated_images})$ \n	
\n $y_dis = np.zeros(2 * BATCH_SIZE)$ \n	
\n $y_dis[:BATCH_SIZE] = 1$ \n	
\n $\text{discription.train_on_batch}(x_dis, y_dis)$ \n	
\n $\text{Update generator weights}$ \n	
\n $\min_{w} \frac{1}{m} \sum_{i=1}^{m} -\log D_{\theta}(G_w(z^{(i)}))$ \n	
\n $\text{noise = np.random.uniform(-1, 1, size=[BATCH_SIZE, 100])}$ \n	
\n $\text{make = np.ones} \text{ (BATCH_SIZE)} \# \text{fake labels}$ \n	
\n $\text{GAN.train_on_batch} \text{ (noise, } y_fake)$ \n	

Generated images

Generator outputs

