#### **Autoencdoer & matrix completion**

Lecture 21

Changho Suh

October 6, 2021

#### Outline

1. Figure out what matrix completion (MC) is.

2. Explore a connection to fusion learning.

3. Investigate a variant of autoencoder that plays a significant role for matrix completion:

#### **Denoising autoencoder**

4. Study one recent MC techinique which leverages the denoising autoencoder.

## **Matrix completion**



One killer application: Recommender system



### The key property that MC exploits

#### Low rank structure of many interested matrices

Example:

| 1 | 2 | * |
|---|---|---|
| * | * | 3 |
| * | 2 | 3 |

$$rank = 1$$

| 1 | 2 | 3 |
|---|---|---|
| 1 | 2 | 3 |
| 1 | 2 | 3 |

## **Connection to fusion learning?**

# **Fusion learning:** A learning methodology that exploits different types of input simultaneously



## A challenge in fusion learning



Often: We have missing data!

 $\rightarrow$  Small # of examples available for all types of data

#### One natural way to address the challenge

Estimate missing entries!

One promeninent way to do this:

**Matrix completion** 

### Methods for matrix completion

One recent method is via autoencoder.

More specifically, it is based on a variant of autoencoder:

**Denoising autoencoder (DAE)** 

# **Denoising autoencoder (DAE)**



The motivation behind DAE has nothing to do with matrix completion.

Instead it is inspired by the key role of autoencoder: Dimensionality reduction!

## **Motivation: Denoising autoencoder**



What we want: Internal features well capture key patterns of the input.

One way to encourage this is to make the network robust against noise.

### **Denoising autoencoder**



Typically noise is applied to the input.

There are two types depending on the noise pattern.

## **Type I: Additive Gaussian noise**



# **Type II: Random masking**



# **Type II: Random masking**

| inpu | t                 |  |  |  | output |  |
|------|-------------------|--|--|--|--------|--|
|      | random<br>masking |  |  |  |        |  |

Turns out: Gives an inspiration to matrix completion

## **Connection to matrix completion**



Take each example with missing entries as input to AE.

Consider output  $\hat{x}^{(i)}$  as the fully-populated version.

**Expect:** Missing entries would be well reconstructed thanks to good performance of DAE.



$$\min_{W^{[1]},...,W^{[6]}} \frac{1}{m} \sum_{i=1}^{m} \sum_{\substack{j:(i,j) \in \Omega \\ \swarrow}} (x_j^{(i)} - \hat{x}_j^{(i)})^2$$
set of pair indices for observed entries



Instead: Can employ the **standard** method w/ or w/o tying weights.

#### What is next?

**Recall:** Autoencoder can serve as a generative model.

There is a more powerful generative model based on:

Generative Adversarial Networks (GANs)

Prior to GANs, a classical method was often employed:

Restricted Boltzmann Machines (**RBMs**)

#### Look ahead

Will study:

1. Generative Adversarial Networks (GANs)

2. Restricted Boltzmann Machines (**RBMs**)