Autoencdoer & matrix completion

Lecture 19

Changho Suh

October 6, 2021

Recap: Dimensionality reduction

Reducing # of features in data by obtaining a set of principal components

Key role: Improve generalization performance

Three prominent techniques:

- 1. Principal Component Analysis (PCA)
- 2. Kernel PCA (a non-linear version of PCA)
- 3. **t-SNE** (for data visualization)

Recap: Coding for dimensionality reduction

- from sklearn.decomposition import PCA, KernelPCA
- from sklearn.manifold import TSNE
- from temsorflow.keras.datasets import mnist

```
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(-1, 28*28) / 255.0
```

```
pca = PCA(n_components=0.95, svd_solver='full')
X pca = pca.fit transform(X train)
```

```
kpca = KernelPCA(kernel="rbf", gamma=10)
```

```
X_kpca = kpca.fit_transform(X)
```

```
tsne = TSNE(n_components=2, random_state=0)
X_tsne = tsne.fit_transform(X_train)
```

Recap: Clustering

Classifiying data points into certain groups (clusters).

Key role: Improve generalization performance

Three prominent methods:

- 1. K-means algorithm
- 2. K-medoids algorithm (robust to outliers)
- 3. Hierarchical clustering (agglomerative clustering)

Recap: Coding for clustering

from sklearn.cluster import KMeans, AgglomerativeClustering
from sklearn_extra.cluster import KMedoids

kmeans = KMeans(n clusters=10, random state=0).fit(X train)

kmedoids = KMedoids(n clusters=10, random state=0).fit(X train)

hierachical = AgglomerativeClustering(n clusters=10).fit(X train)

Next topics?

Mentioned: Many people in Hyundai Motors are interested in:

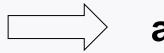
1. Anomaly detection

2. Fusion learning

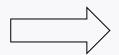
Techniques of our focus

Mentioned: Many people in Hyundai Motors are interested in:

1. Anomaly detection



2. Fusion learning



matrix completion

Outline of today's lecture

Will explore autoencoder & matrix completion in depth:

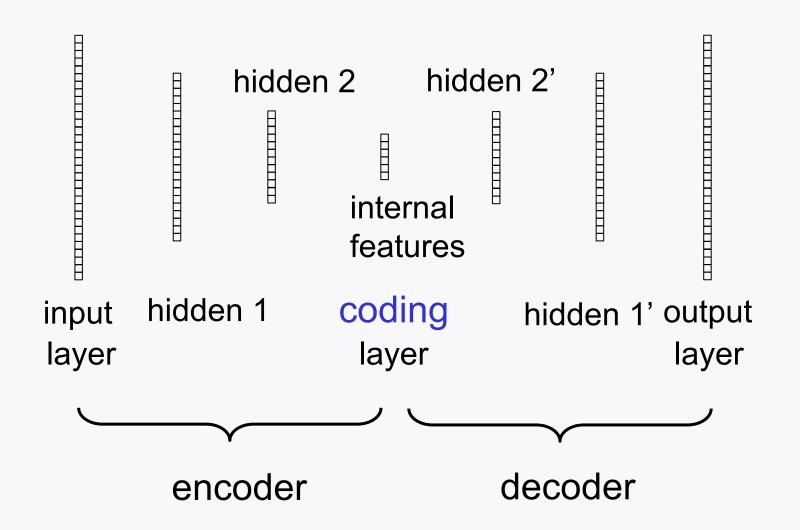
- 1. Investigate the architecture of autoencoder and training methods.
- 2. Discuss several roles of autoencoder.
- 3. Explore how to use autoencoder for anomaly detect.
- 4. Figure out what matrix completion (MC) is.
- 5. Figure out its relevance to fusion learning.
- 6. Study one recent MC technique which leverages autoencoder.

Focus of Lecture 19

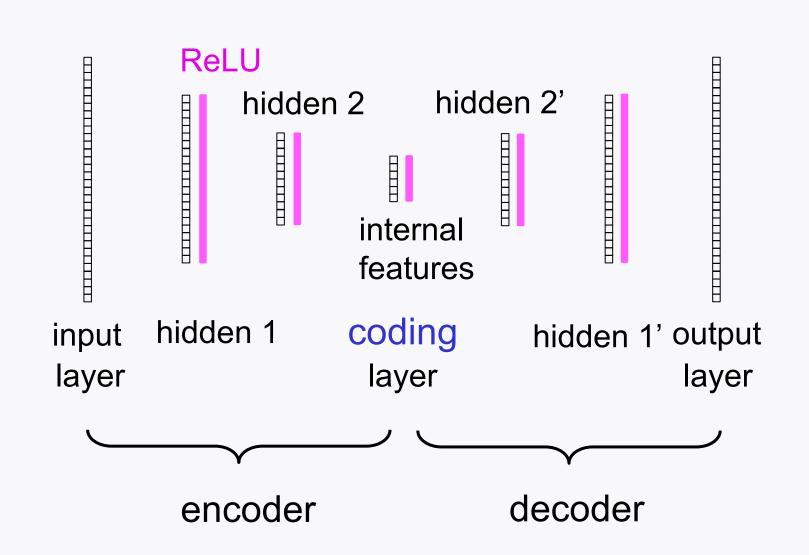
Will explore autoencoder & matrix completion in depth:

- 1. Investigate the architecture of autoencoder and training methods.
- 2. Discuss several roles of autoencoder.
- 3. Explore how to use autoencoder for anomaly detect.
- 4. Figure out what matrix completion (MC) is.
- 5. Figure out its relevance to fusion learning.
- 6. Study one recent MC technique which leverages autoencoder.

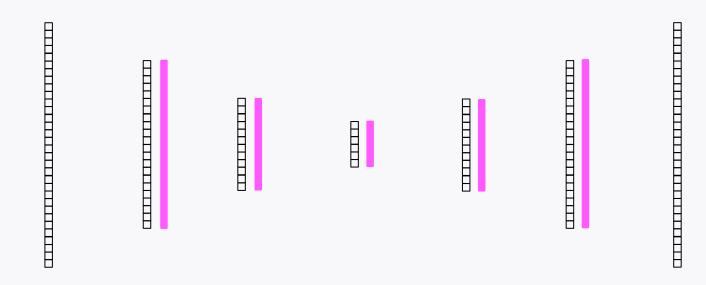
Autoencoder architecture



Autoencoder architecture

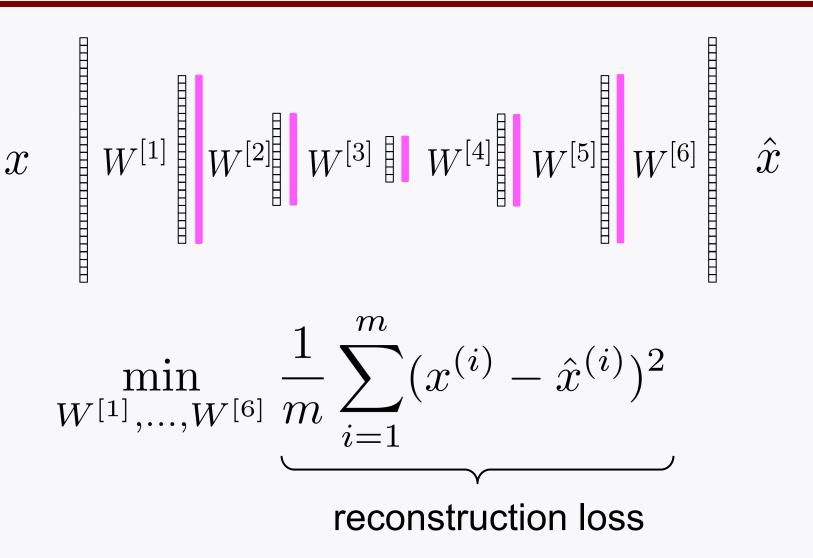


Training methods



- 1. Naive method
- 2. Standard method
- 3. Standard method with tying weights

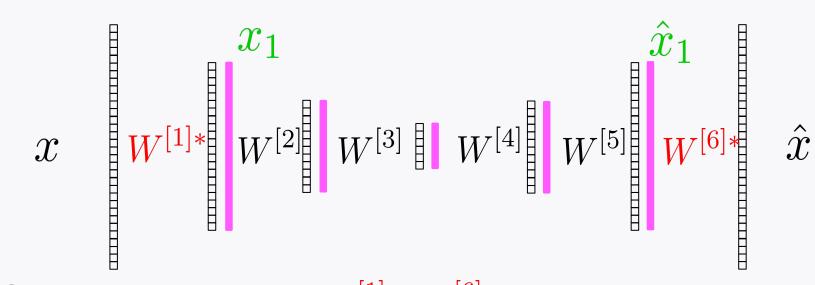
1. Naive method



$$x \qquad W^{[1]} \qquad W^{[2]} \qquad W^{[3]} \qquad W^{[4]} \qquad W^{[5]} \qquad W^{[6]} \qquad \hat{x}$$

Step 1: Find $(W^{[1]*}, W^{[6]*})$ while ingoring others.

$$\min_{\boldsymbol{W^{[1]}, W^{[6]}}} \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \hat{x}^{(i)})^2$$



Step 2: Freezing $(W^{[1]*}, W^{[6]*})$:

find $(W^{[2]*}, W^{[5]*})$ while inside layers. $\min_{W^{[2]}, W^{[5]}} \frac{1}{m} \sum_{i=1}^{m} (x_1^{(i)} - \hat{x}_1^{(i)})^2$

$$x \qquad \begin{bmatrix} x_{2} \\ W^{[1]*} \end{bmatrix} \begin{bmatrix} x_{2} \\ W^{[3]} \end{bmatrix} \begin{bmatrix} x_{2} \\ W^{[3]} \end{bmatrix} \begin{bmatrix} \hat{x}_{2} \\ W^{[5]*} \end{bmatrix} \begin{bmatrix} W^{[6]*} \end{bmatrix} \begin{bmatrix} \hat{x}_{2} \\ W^{[6]*}$$

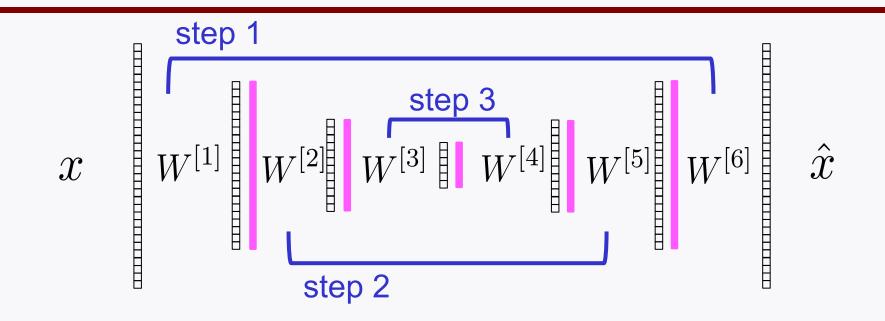
$$x \qquad W^{[1]} \qquad W^{[2]} \qquad W^{[3]} \qquad W^{[3]} \qquad W^{[4]} \qquad W^{[5]} \qquad W^{[6]} \qquad \hat{x}$$

Step 4: With initial weights $(W^{[1]*}, W^{[6]*}, W^{[2]*}, W^{[5]*}, W^{[3]*}, W^{[4]*})$:

fine-tune
$$(W^{[1]}, \dots, W^{[6]})$$

$$\min_{W^{[1]}, \dots, W^{[6]}} \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \hat{x}^{(i)})^2$$

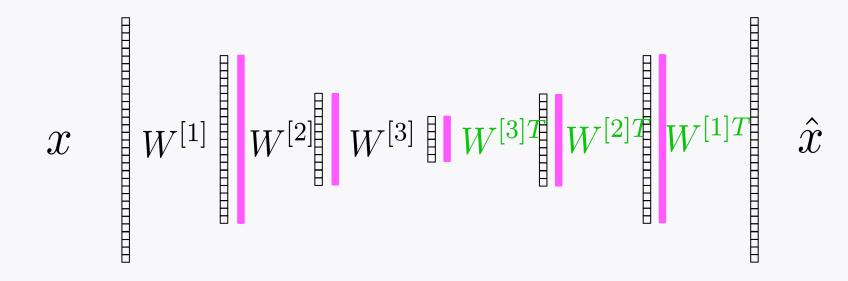
Remarks



Particularly useful for very deep neural networks

Easy to implement in TensorFlow

3. Standard method with tying weights

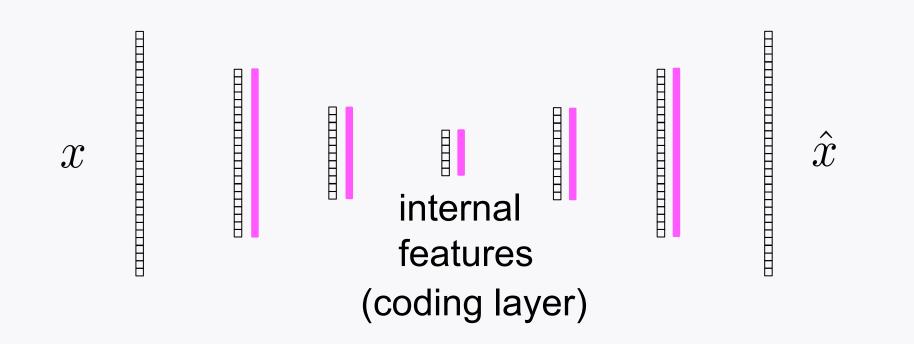


Tie 1st layer's weights to the last layer's ones.

Similarly for the other inside layers.

Except for this, the training method is the same as before.

Main role of autoencoder



Can serve as a non-linear **dimensionality reduction** technique.

Look ahead

1. Discuss other roles of autoencoder.

2. Explore how to use autoencoder for anomaly detect.