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Recap: DTs 

1 

A decision-based model of the tree structure. 

Training algorithm:  CART 

Hyperparameters:  

“max_depth” “min_samples_split” 

“min_samples_leaf” “max_leaf_nodes” 

Challenge:  Sensitive to small variations in training data 
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Recap: RFs 

2 

An ensemble of DTs, each trained on the random 

subspace method 

training 

set 

sampling 

features 

randomly 

voting 

Hyperparameters:  “max_features” 

A measure for interpretation:  Feature importance 

“n_estimators” 
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Recap: Coding for DTs and RFs 

3 

from sklearn.tree  import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier 

tree_clf = DecisionTreeClassifier(max_depth=2) 

tree_clf.fit(X_train,y_train) 

from  sklearn.tree import plot_tree 

plot_tree(tree_clf) 

rnd_clf = RandomForestClassifier(n_estimators=500,max_leaf_nodes=16) 

rnd_clf.fit(X_train,y_train) 

feature_importances = rnd_clf.feature_importances_ 
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Recap: Coding for hyperparameter search 

4 

From sklearn.model_selection import RandomizedSearchCV 

param_distributions={'n_estimators':range(1,500),'max_features':range(1,5)}                    

randomized_search.best_params_ 

randomized_search.best_estimator_ 

randomized_search.best_estimator_.feature_importances_ 

from sklearn.model_selection import GridSearchCV 

param_grid={'n_estimators':[3,10,100,500],'max_features':[1,2,3,4]} 

forest_clf=RandomForestClassifier(max_depth=2) 

grid_search=GridSearchCV(forest_clf,param_grid,cv=5,scoring='accuracy')             

grid_search.fit(X_train,y_train) 

randomized_search=RandomizedSearchCV(forest_clf,param_distributions,  

                                     cv=5,n_iter=50,scoring='accuracy')                            

randomized_search.fit(X_train,y_train) 



Copyright ©  2021 Changho Suh @ KAIST. All rights reserved. 

Question 

5 

So far: Learned about DNNs, CNNs, RNNs & RFs. 

What if still unsatisfactory performances?  

This may be due to: 

1. 

2. 

data dimension 

# of examples and/or 

data distribution is pretty wide. 

i.e., data characteristics are quite distinct across 

examples. 
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Techiques for addressing such scenarios 

6 

Scenario 1: 

data distribution is pretty wide. Scenario 2: 

dimensionality reduction 

clustering 
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Outline of today’s lecture 

7 

Will study dimensionality reduction & clustering: 

Principal Component Analysis (PCA) 

t-distributed Stochastic Neighbor Embedding (t-SNE) 

1.  

2.  

3.  

Explore the most popular dimensiona reduction 

technique:  

Investigate another prominent technique: 

Study clustering methods. 

joker1251
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Focus of Lecture 16 

8 

Will study dimensionality reduction & clustering: 

Principal Component Analysis (PCA) 

t-distributed Stochastic Neighbor Embedding (t-SNE) 

1.  

2.  

3.  

Explore the most popular dimensiona reduction 

technique:  

Investigate another prominent technique: 

Study clustering methods. 
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Dimensionality reduction 

9 

Reducing # of features in data by obtaining a set 

of principal components 

Three major roles: 

1.  

2.  Speed up training 

Data visualization 3.  

Improve generalization performance 
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Principal Component Analysis (PCA) 

10 

Karl Pearson 1901 

The most popular 

dimensionality reduction 

technique! 
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PCA in words 

11 

A technique that does the following: 

1.  Identify a vector along which data points are most 

explained. 

2.  Find another vector along which data points are most 

explained subject to orthogonality to the 1st one 

3.  Repeat until reaching desired # of vectors. 

1st principal component (PC) 

2nd PC 
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PCA in picture 

12 

Find a vector along which data points are most spread. 

Similarly find another vector yet orthogonal to 1st one. 

1st PC 
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How to find c1? 

13 
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How to find c1? 

14 
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How to find c1? 

15 

training data matrix 

joker1251
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How to find c1? 

16 

symmetric matrix 

Eigenvalue decomposition: 
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How to find c1? 

17 
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How to find c1? 

18 

(1st eigenvector of          ) 

(1st singular vector of     ) 
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How to find PCs? 

19 

training data matrix 

“d” number of PCs 
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How to choose d? 

20 

Choose d so as to explain a sufficiently large portion of 

data (e.g., 95%) 

A measure that captures the proportion of data 

reflected in a principal component: 

EVR (explained variance ratio) 

Choose d such that:  
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PCA output? 

21 

training data matrix 

principal components matrix 
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Another technique? 

22 

There is a non-linear version of PCA: 

Note: PCA is a linear technique. 

Kernel PCA 

A non-linear 

transformation 

via a kernel 

function 

PCA 
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Look ahead 

23 

Will study another non-linear technique:  

t-distributed Stochastic Neighbor Embedding (t-SNE) 


