## Small data technique I

#### Lecture 15

Changho Suh

October 1, 2021

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

## **Random forests (RFs)**

## Outline

1. Investigate hyperparameters.

2. Study a key measure for model *interpretation*:

## **Feature Importance**

## Hyperparameters



Two types:

**DT** hyperparameters + additional hyperparameters

# Hyperparameters

- **DT** hyperparameters + additional hyperparameters
- "max\_depth" "max\_features"
- "min\_samples\_split"

"n\_estimators"

- "min\_samples\_leaf"
- "max\_leaf\_nodes"

 $\sqrt{n_{features}}$ 

n\_features

100

# **Default parameters**

- **DT** hyperparameters + additional hyperparameters
- "max\_depth" none "max\_features"
- "min\_samples\_split" 2 "n\_estimators"
- "min\_samples\_leaf" 1
- "max\_leaf\_nodes" none

## Hyperparameters vs. regularization

- **DT** hyperparameters + additional hyperparameters "max\_features" "max depth" "n\_estimators" "min samples split" "min samples leaf" "max leaf nodes"
  - $\rightarrow$  More regularized.

### Scikit-learn provides functions that ease search:

GridSearchCV

#### RandomizedSearchCV

Check details in PS.

## A measure for model interpretation

# RFs have a **measure** that captures **the relative importance of each feature**:

#### **Feature Importance**

#### Can serve model interpretation.

## How to compute "feature importance"?

For each DT, first compute "node importance":

$$\mathsf{NI}_j = G_j - \frac{m_{j,\mathsf{left}}}{m_j} G_{j,\mathsf{left}} - \frac{m_{j,\mathsf{right}}}{m_j} G_{j,\mathsf{right}}$$

Then compute "feature importance" based on  $NI_j$ :

$$\mathsf{FI}_k = \frac{\sum_{j:\text{w.r.t. }k} \mathsf{NI}_j}{\sum_j \mathsf{NI}_j}$$

#### Average over all DTs.

# **Example: MNIST**





28

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

# **MNIST pixel importance**



# **Summary of Day 1 lectures**



Linear activation + squared-error loss: LS classifier

Logistic acti. + cross entropy loss: Logistic regression

# **Summary of Day 1 lectures**



Rule of thumb: ReLU (@hidden); Logistic (@output) Cross-entropy loss

Algorithm: Gradient descent via backprop

# **Summary of Day 2 lectures**

Advanced techniques:

- 1. Data organization
- 2. Generalization techniques
- 3. Weight initialization
- 4. Techniques for training stability
- 5. Hyperparameter search
- 6. Cross validation

# **Summary of Day 3 lectures**



Two key building blocks: Conv layer & Pooling layer Design principles: As a network is deeper,

- 1. Feature map sizes gets smaller.
- 2. # of feature maps gets bigger.

# **Summary of Day 4 lectures**



**Key building blocks**: Recurrent neurons & memory cell **Basic RNNs**: Trained via truncated BTTP. LSTM: Offers great performance and faster training.

# **Summary of today's lectures**

RF: An ensemble of DTs, each trained on the random subspace method



A key hyperparameter: **"max\_features"** A measure for *interpretation*: **Feature importance** 

## Question

So far: Learned about DNNs, CNNs, RNNs & RFs.

What if still unsatisfactory performances?

This may be due to:

- 1.  $n \gg m \leftarrow \# \text{ of examples}$  and/or `data dimension
- 2. data distribution is pretty wide.

i.e., data characteristics are quite distinct across examples.

## **Techiques for addressing such scenarios**

#### Scenario 1: $n \gg m$



dimensionality reduction

## **Scenario 2:** data distribution is pretty wide.



# **Outline of Day 6 lectures**

Will study dimensionality reduction & clustering:

- 1. Explore the most popular dimensiona reduction technique: Principal Component Analysis (**PCA**)
- Investigate another prominent technique:
  t-distributed Stochastic Neighbor Embedding (t-SNE)
- 3. Study clustering methods.