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Random forests (RFs)
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Outline
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1.

2.

Investigate hyperparameters.

Study a key measure for model interpretation:

Feature Importance
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Hyperparameters

3

DT hyperparameters additional hyperparameters+

Two types:

training 
set

random-sampling 
examples & features

voting
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Hyperparameters
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DT hyperparameters additional hyperparameters+
“max_depth”

“min_samples_split”

“min_samples_leaf”

“max_leaf_nodes”

“max_features”

“n_estimators”

joker1251
random_subspace에서 feature를 랜덤하게 고르는 단계에서
max_features를 1로 하면 전체를 다 고를 수 도 있게 하겠다는 의미이고,
0.1로 하면 10%만..

n_estimators 는 tree의 개수를 의미함
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Default parameters
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DT hyperparameters additional hyperparameters+
none

2

1

none

100

“max_depth”

“min_samples_split”

“min_samples_leaf”

“max_leaf_nodes”

“max_features”

“n_estimators”
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Hyperparameters vs. regularization
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DT hyperparameters additional hyperparameters+

à More regularized.

“max_depth”

“min_samples_split”

“min_samples_leaf”

“max_leaf_nodes”

“max_features”

“n_estimators”
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Hyperparameter search
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Scikit-learn provides functions that ease search: 

Check details in PS.

GridSearchCV

RandomizedSearchCV
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A measure for model interpretation
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RFs have a measure that captures the relative 
importance of each feature:

Feature Importance

Can serve model interpretation.
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How to compute “feature importance”?
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Average over all DTs.

For each DT, first compute “node importance”:

Then compute “feature importance” based on      :

joker1251
NI: Node Importance
FI: Feature Importance
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Example: MNIST
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pixel value = feature
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MNIST pixel importance
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Summary of Day 1 lectures
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machine

Perceptron

Linear activation + squared-error loss: LS classifier

Logistic acti. + cross entropy loss: Logistic regression
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Summary of Day 1 lectures
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machine

DNN

Rule of thumb: ReLU (@hidden); Logistic (@output)
Cross-entropy loss

Algorithm: Gradient descent via backprop
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Summary of Day 2 lectures
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Advanced techniques:

1.

2.

3.

4.

5.

6.

Generalization techniques

Data organization

Weight initialization

Techniques for training stability

Hyperparameter search

Cross validation
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Summary of Day 3 lectures
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machine

CNN
architecture

Two key building blocks: Conv layer & Pooling layer
Design principles: As a network is deeper,

1. Feature map sizes gets smaller.
2. # of feature maps gets bigger.
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Summary of Day 4 lectures
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machine

RNN

Key building blocks: Recurrent neurons & memory cell
Basic RNNs: Trained via truncated BTTP.
LSTM: Offers great performance and faster training.

joker1251
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Summary of today’s lectures
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RF: An ensemble of DTs, each trained on the random 
subspace method

training 
set

random-sampling 
examples & features 

voting

A key hyperparameter: “max_features”
A measure for interpretation: Feature importance
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Question
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So far: Learned about DNNs, CNNs, RNNs & RFs.

What if still unsatisfactory performances?

This may be due to:

1.

2.
data dimension

# of examples and/or

data distribution is pretty wide.
i.e., data characteristics are quite distinct across 
examples.
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Techiques for addressing such scenarios
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Scenario 1:

data distribution is pretty wide.Scenario 2:

dimensionality reduction

clustering
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Outline of Day 6 lectures
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Will study dimensionality reduction & clustering:

Principal Component Analysis (PCA)

t-distributed Stochastic Neighbor Embedding (t-SNE)

1. 

2. 

3. 

Explore the most popular dimensiona reduction 
technique: 

Investigate another prominent technique:

Study clustering methods.


