Small data technique I

Lecture 14

Changho Suh

October 1, 2021

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Challenge of DTs & ensemble learning

1. Investigate a challenge that arises in DTs.

2. Explore a way to address the challenge:

Ensemble learning

Challenge

Very sensitive to **small variations** of training data.

Example:

remove very long versicolor

A solution to address variation sensitivity

Turns out:

Ensemble learning is a solution.

For the rest:

- 1. Study what ensemble learning is.
- 2. Study ond powerful ensemble method:

Random forests (RFs)

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Ensemble learning

How to decide when we have *diverse* opinions?

Often rely on majority voting.

Wisdom of the crowd: An aggregated decision is often better than even an expert's answer.

Can expect in the predictor context:

An aggregating prediction based on many predictors

 \rightarrow A better prediction relative to the best predictor.

Ensemble learning

Ensemble: A group of predictors

Ensemble learning:

A technique that aggregates predictions of the ensemble.

Hard voting: Declare the one that gets most votes.

Soft voting: Declare the one with **highest probability** averaged over predictors

A way to obtain ensemble

Train each predictor on a **different subset** of the training set.

How to construct different subsets?

1. A way to choose *partial examples*: **Bootstrap**

2. A way to choose *partial features*:

Random subspace method

RF=Bootstrap+random subspace

RF=Bootstrap+random subspace

Decision Tree (DT) w/ D_1

Split a node considering a random subset of features.

RF in picture

Look ahead

Study **RF** in depth:

- 1. Investigate hyperparameters;
- 2. Study a measure for model *interpretation*: **Feature Importance**