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Decision trees (DTs)
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Recap: DNNs

Work well with enough data.

Otherwise, we may face: Overfitting problem

This motivates simplifying DNNs, being tailored for
tasks of interest.
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Recap: CNNs

A model specialized for image data

Two key building blocks:

1. Conv layer (mimicking neurons in visual cortex)
2. Pooling layer (mainly for reducing complexity)

Design principles: As a network gets deeper:

1. Feature map size gets smaller;
2. # of feature maps gets bigger.
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Recap: RNNs

A model specialized for time-series data

Two key building blocks:

1. Recurrent neurons
2. Memory cell

Basic RNNs: Trained via truncated BTTP.
LSTM: Offers great performance and faster training.


joker1251
Recurrent neurons: --> Units

Cell --> Basic Cell, LSTM Cell (SimpleRNN이 Basic Cell임, 이 때 time_window=1)
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Recap: Tensorflow coding for RNNs

from tensorflow.keras.datasets import imdb

from tensorflow.keras.preprocessing.sequence import pad sequences

from keras.models import Sequential
from keras.layers import Dense, Embedding, SimpleRNN, LSTM

(X _train, y train), (X test, y test) = imdb.load data (num words=10000)

# Preprocessing

X train pad = pad sequences (X train, value=0, padding=‘post', maxlen=256)

# Basic RNN
model = Sequential ()
model.add (Embedding (num words, 100, input shape=(None,)))

model.add (SimpleRNN (128) )

model.add (Dense (1, activation='sigmoid'))

#LSTM

model LSTM = Sequential ()

model LSTM.add (Embedding (num words, 100, input shape=(None,)))
model LSTM.add (LSTM(128))

model LSTM.add (Dense (1, activation='sigmoid'))
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Questions

1. What if still unsatisfactory performances?

A better approach for the small data regime?

2. What about interpretability of DNNs?
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Today’s lectures

Will explore a technique that may enable a better
performance for the small-data regime, as well as
offer model interpretability:

Random forests (RFs)

The most powerful ML algorithm in industry
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Outline of today’s lectures

Specifically we will study:

1. Decision trees (DTs):
Fundamental components of RFs

2. Ensemble learning:
A generic technique that includes RFs as a special case.

3. RFs in depth
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Focus of Lecture 13

Specifically we will study:

1. Decision trees (DTs):
Fundamental components of RFs

.

2. Ensemble learning:

A generic technique that includes RFs as a special case.

3. RFs in depth
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A motivating example

Classification on Iris dataset:

Class: setosa versicolor virginica

petal length
petal width
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Data distribution

petal
width
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Observation

petal
width

“petal length” plays a key role to distinguish
sectosa from versicolor & virginica.
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A natural attempt for classification
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Another observation

“petal width” serves to distinguish
versicolor from virginica.
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A follow-up natural attempt

almost “virginica”
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DT

pedal length < 2.45

tru%

[ val=[12,0,0] )
class=setosa

\. J

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

T2
4 almost “virginica”
petal A A A
width A A A
. mad,A
| = A1'.7‘5
1] ” 1 . . A cm
only “setosa i ] A 4
o ; B B g
e® o, =
o o © : ]
® o o ! almost “versicolor”
false
2.45cm petal length

(val=[0,12,14]

class=vi| Ica

pedal width < 1.75

How to come up
with the conditions?
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CART (Classification And Regression Tree) algorithm

k : feature index - - __"_‘:‘Aﬁs
{1 . threshold . .:::-E: =" " |
E 2.45¢cm petal length
Step 1: Find (k,tx) such that J(k,tx) is minimized.
_ Meft Myright .
J(k’tk) o m Gleft m G”ght smaller - more pure
3 impurity of the left split: Gini index (0~1)
Gt =1— ) rpge=1-(1+0>+0%) =0
c=1
2 2
Gright =1 — (02 + (32)" + (5)7) = 0.497 -


joker1251

joker1251
Impurity:  불순도

m 은 샘플의 개수를 말하는 것임
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CART (Classification And Regression Tree) algorithm

Step 1: Find (k,tx) such that J(k,tx) is minimized.

TN |eft

J(k,tr) =

Mright
Glet + ——Giright
m

Step 2: Repeat Step 1 for each split:

Gleft left Glright left
Gleft Gright

Gleft,right Gright,right

Stopping criteria®?
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Stopping criteria
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OR
hyperparameter

2. Reach “max_depth”™

max_depth=2 (in the example)
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Hyperparameters

T2 1
A : almost “virginica”
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14 ” width | At A A
1. "'max_depth R matalt
— 1 . A -
) ) i m B A cm
only “setosa i ] A 4
° o i u - H g
® o :Q ® .i u m
1 - =g ® ® o | almost “versicolor”
2. ‘'min_samples_split -
— — 2.45cm petal length

Min # of samples a node must have prior to splitting.

3. “‘min_samples_leaf”

Min # of samples a leaf must have.

4. “max_leaf nodes”’

Max # of leaf nodes
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Hyperparameters vs. regularization

1. “‘max_depth” l More regularized

2. ‘min_samples_split” T More regularized

Min # of samples a node must have prior to splitting.

3. ‘“min_samples_leaf” T More regularized

Min # of samples a leaf must have.

4. "“max_leaf nodes” l More regularized

Max # of leaf nodes

21
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DTs for regression
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A motivating example
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Observation

Y+ concentrated
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A natural attempt for separation
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Observation in each split

lconcentrated

concentrated o
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A follow-up natural attempt

mean in each split
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Decision tree

r < 0.2

true %ksg‘
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How to come up

t?/e false true fa\s.e with the conditions?
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CART algorithm
71 ®
o '.’::’ ° i §4§. ?o.
k . feature index v ..‘..;, e
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Step 1: Find (k,tx) such that J(k,tx) is minimized.

TN |eft

J(kj7 tk) — MSE|eft + —MSEright
m m
. _ 1 i
MSE ¢ := Z <y(z> — gleft)2 Yeft = m Z y( )
iCleft left 1€ left
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CART algorithm

Step 1: Find (k,tx) such that J(k,tx) is minimized.

Mie My
M MSE egy + — 2™ MSEight
m m

J(k,ty) =

Step 2: Repeat Step 1 for each split:

MSE|eft,|eﬂ; MSEright,Ieft
MSE|eft < |\/|SEright<
MSEIeft,right IVlSEright,right

Stopping criteria & hyperparameters are the
same as those of classification.
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Look ahead

1. Investigate a challenge that arises in DTs.

2. Explore a way to address the challenge:

Ensemble learning
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