Small data technique I

Lecture 13

Changho Suh

October 1, 2021

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Decision trees (DTs)

Recap: DNNs

Work well with enough data.

Otherwise, we may face: Overfitting problem

This motivates simplifying DNNs, being tailored for tasks of interest.

Recap: CNNs

A model specialized for image data

Two key building blocks:

Conv layer (*mimicking* neurons in *visual cortex*)
 Pooling layer (*mainly for reducing complexity*)

Design principles: As a network gets deeper:

- 1. Feature map size gets smaller;
- 2. # of feature maps gets bigger.

Recap: RNNs

A model specialized for time-series data

Two key building blocks:

Recurrent neurons _≡
 Memory cell

Basic RNNs: Trained via truncated BTTP. **LSTM:** Offers great performance and faster training.

Recap: Tensorflow coding for RNNs

```
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense, Embedding, SimpleRNN, LSTM
```

(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=10000)

#Preprocessing

```
X_train_pad = pad_sequences(X_train, value=0, padding='post', maxlen=256)
```

Basic RNN

```
model = Sequential()
model.add(Embedding(num_words, 100, input_shape=(None,)))
model.add(SimpleRNN(128))
model.add(Dense(1, activation='sigmoid'))
```

LSTM

```
model_LSTM = Sequential()
model_LSTM.add(Embedding(num_words, 100, input_shape=(None,)))
model_LSTM.add(LSTM(128))
model_LSTM.add(Dense(1, activation='sigmoid'))
```


1. What if still unsatisfactory performances?

A better approach for the small data regime?

2. What about interpretability of DNNs?

Will explore a technique that may enable a better performance for the small-data regime, as well as offer model interpretability:

Random forests (RFs)

The most powerful ML algorithm in industry

Outline of today's lectures

Specifically we will study:

- 1. Decision trees (DTs): Fundamental components of RFs
- 2. Ensemble learning:

A generic technique that includes RFs as a special case.

3. **RFs** in depth

Focus of Lecture 13

Specifically we will study:

1. Decision trees (DTs):

Fundamental components of RFs

2. Ensemble learning:

A generic technique that includes RFs as a special case.

3. **RFs** in depth

A motivating example

Classification on Iris dataset:

Class: setosa versicolor virginica

Features:

 x_1 : petal length x_2 : petal width

Data distribution

Observation

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

A natural attempt for classification

Another observation

A follow-up natural attempt

DT

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

CART (Classification And Regression Tree) algorithm

 $J(k, t_k) = \frac{m_{\text{left}}}{m} \underbrace{G_{\text{left}}}_{m} \frac{m_{\text{right}}}{m} G_{\text{right}} \text{ smaller} \rightarrow \text{more pure}$ impurity of the left split: Gini index (0~1) $G_{\text{left}} := 1 - \sum_{c=1}^{3} r_{\text{left},c}^2 = 1 - (1^2 + 0^2 + 0^2) = 0$ $G_{\text{right}} = 1 - (0^2 + (\frac{12}{26})^2 + (\frac{14}{26})^2) = 0.497$

CART (Classification And Regression Tree) algorithm

Step 1: Find (k, t_k) such that $J(k, t_k)$ is minimized.

$$J(k, t_k) = \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}}$$

Step 2: Repeat Step 1 for each split:

Stopping criteria?

Stopping criteria

OR

hyperparameter

2. Reach "max_depth".

max_depth=2 (in the example)

Hyperparameters

1. "max_depth"

Min # of samples a node must have prior to splitting.

3. "min_samples_leaf"

2. "min_samples_split"

Min # of samples a leaf must have.

4. "max_leaf_nodes"

Max # of leaf nodes

Hyperparameters vs. regularization

More regularized 1. "max depth" 2. "min_samples_split" More regularized Min # of samples a node must have prior to splitting. 3. "min_samples_leaf" More regularized Min # of samples a leaf must have. 4. "max_leaf_nodes" More regularized Max # of leaf nodes

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

DTs for regression

A motivating example

Observation

A natural attempt for separation

Observation in each split

A follow-up natural attempt

Decision tree

CART algorithm

Step 1: Find (k, t_k) such that $J(k, t_k)$ is minimized.

$$J(k, t_k) = \frac{m_{\text{left}}}{m} \text{MSE}_{\text{left}} + \frac{m_{\text{right}}}{m} \text{MSE}_{\text{right}}$$
$$\text{MSE}_{\text{left}} := \sum_{i \in \text{left}} (y^{(i)} - \bar{y}_{\text{left}})^2 \qquad \bar{y}_{\text{left}} = \frac{1}{m_{\text{left}}} \sum_{i \in \text{left}} y^{(i)}$$

CART algorithm

Step 1: Find (k, t_k) such that $J(k, t_k)$ is minimized.

$$J(k, t_k) = \frac{m_{\mathsf{left}}}{m} \mathsf{MSE}_{\mathsf{left}} + \frac{m_{\mathsf{right}}}{m} \mathsf{MSE}_{\mathsf{right}}$$

Step 2: Repeat Step 1 for each split:

Stopping criteria & hyperparameters are the same as those of classification.

Look ahead

1. Investigate a challenge that arises in DTs.

2. Explore a way to address the challenge:

Ensemble learning