Convolutional neural networks

Lecture 7

Changho Suh

September 29, 2021

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Convolutional neural networks (CNNs) and history

Recap: Data organization & evaluation

m is a deciding factor for the **ratio** of data split:

4 regimes: Small, middle, large and ultra-large

val set dist. ~ test set dist. ~ target dist.

Cross validation for evaluation:

Choose a hyperparameter that minimizes the average validation loss:

$$\mathsf{val}\;\mathsf{loss} = \frac{\mathsf{val}_1 + \mathsf{val}_2 + \mathsf{val}_3 + \mathsf{val}_4}{4}$$

Recap: Techniques for DNNs

Weight initialization: Xavier's, He's

Training stability: Adam optimizer, BN

Hyperparameter search:

L of layers, # $n^{[\ell]}$ of hidden neurons, activation

Recap: DNNs

Model complexity is very high.

This often leads to the overfitting problem.

This motivates the use of generalization techniques:

Regularization; data augmentation;

early stopping; drop out

Recap: Tensorflow coding

Train-val-test data split:

from sklearn.model_selection import train_test_split

BN, dropout, activation, early stopping, Ir decay:

from keras.layers import BatchNormalization, Dropout, ReLU

from keras.callbacks import EarlyStopping, LearningRateScheduler

What is next?

One important question:

Can DNNs be specialized?

CNNs: Image data

RNNs: Text/audio data (language) and any sequential data

Outline of today's lectures

Focus on CNNs.

Specifically we will:

- 1. Investigate how CNNs were developed;
- 2. Study the two key building blocks; Conv layer

Pooling layer

3. Discuss two popular CNN architectures.

Focus of Lecture 7

Focus on CNNs.

Specifically we will:

- 1. Investigate how CNNs were developed;
- 2. Study the two key building blocks;

Conv layer

Pooling layer

3. Discuss two popular CNN architectures.

Visual cortex (시각피질)

Hubel & Wiesel '58/'59 observed:

- 1. React only to a limited region (receptive field)
- 2. Higher-level neurons are based on lower-level ones.

*Won them the Nobel Prize in Physiology or Medicine in '81.

Led to the birth of CNNs

Inspired Fukushima to propose the first CNN in 1980: **Neocognitron**

Commercialized for handwritten check numbers recognition.

Kunihiko Fukushima **1980**

Yann LeCun 1988

Two building blocks of CNNs

1. Convolutional layer (Conv layer)

Role: Mimick neurons' behaviors: Reacting only to receptive fields.

2. Pooling layer

Role: Downsample to reduce complexity (# parameters & memory size).

Conv layer

input

conv

*Convolution operation is very similar to cross-correlation.

Abstraction via grids

conv

What about for next *right* neuron?

conv

What about for next below neuron?

conv

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

In general ...

input

conv

l

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

What if a receptive field is out of range?

conv

What if a receptive field is out of range?

conv

Feature map

This is why we *share the same filter* for computations of other neurons *within the same feature map*.

Look ahead

- 1. Will study further on "feature map".
- 2. Will study 2nd building block: **Pooling** layer