Advanced techniques

Lecture 6

Changho Suh

September 28, 2021

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Hyperparameter search and cross validation

Outline

1. Hyperparameter search

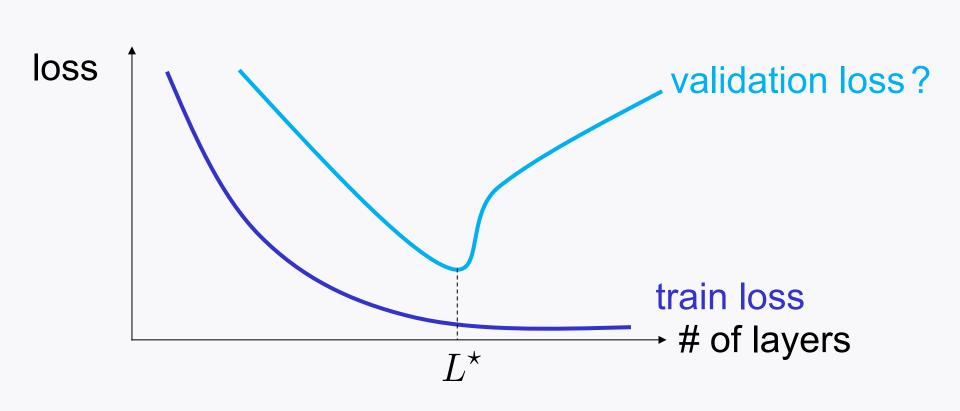
L of layers, # $n^{[\ell]}$ of hidden neurons, activation learning rate, betas, batch size, # *T* of epochs, regularization factor, dropout rate, ...

2. Cross validation

of layers

Just begin with a **single hidden** layer.

Gradually (linearly) ramp up # of hidden layers **until not overfitting.**


Here use the same number of hidden neurons for all hidden layers.

Set the number of hidden neurons around one half of the number of input neurons.

of layers vs. loss

of layers vs. loss

of hidden neurons

Two approaches:

1. Fewer neurons for deeper layers

2. Same size for all hidden layers:

Linearly increase the size until not overfitting.

Activation functions

A default setup:

Hidden layers: ReLU

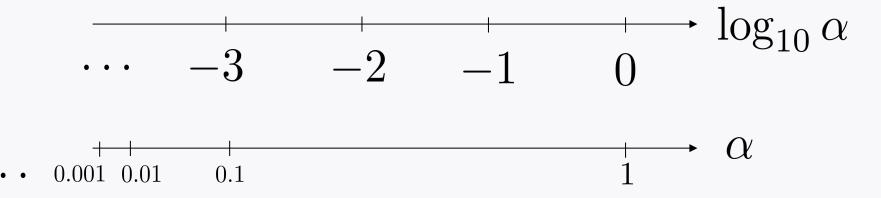
Output layer: Softmax for multi-class classification

Optimizer

A default use: Adam

Default parameters: $(\beta_1, \beta_2) = (0.9, 0.999)$

Two approaches for a choice of the learning rate:

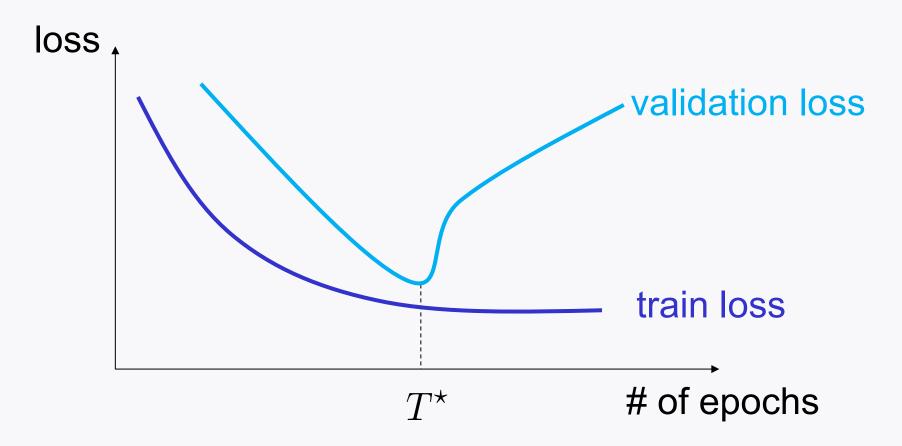

- 1. Learning rate decaying
- 2. Fixed (e.g., $\alpha=0.001$)

How to choose a fixed value of $\,\alpha\,$

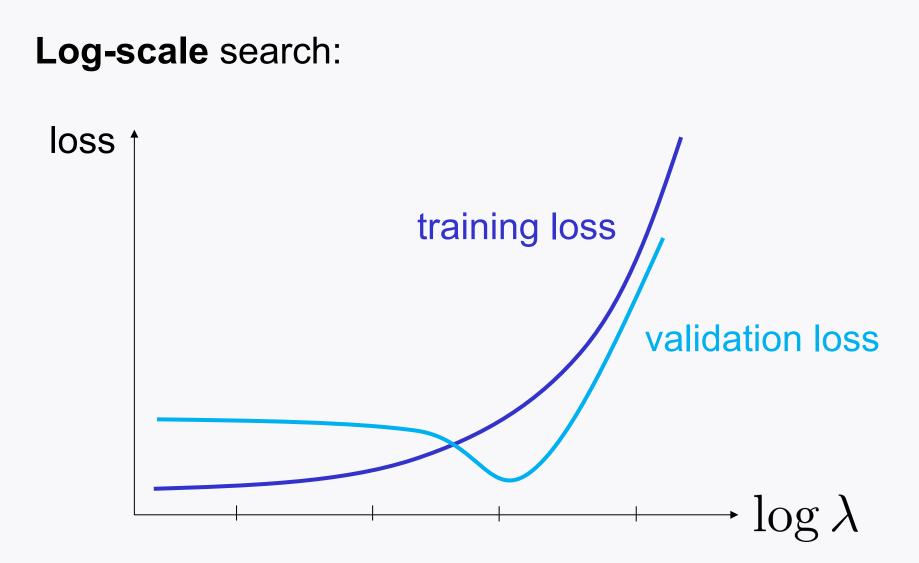
Do not use a linear-scale grid search.

Try **random** values and **then do a fine search** around the good choices.

Grid scale for the fine search: Log scale


Batch size

A common choice: Power of two.


4, 8, 16, 32, 64, 128, 256

of epochs

Choose according to early stopping:

Regularization factor

Dropout rate

A typical choice: p = 0.5

A good range: $0.2 \le p \le 0.8$

Cross validation

Purpose: Obtain reliable validation loss via averaging.

Example: 4-fold cross validation

val train	train	train	test	
-----------	-------	-------	------	--

 \rightarrow Compute a validation loss, say val₁

Take the 2nd partition for val:

train	val	train	train	test
-------	-----	-------	-------	------

 \rightarrow Compute a corresponding loss: val₂

the

Cross validation

average loss.

val	train	train	train	test	val_1
train	val	train	train	test	val_2
train	train	val	train	test	val_3
train	train	train	val	test	val_4

Take the average over the 4 losses:

val loss =
$$\frac{val_1 + val_2 + val_3 + val_4}{4}$$

Choose a hyperparameter that minimizes

15

A final model w.r.t. the best hyperparameter?

val	train	train	train	test	$] model_1$
train	val	train	train	test	$model_2$
train	train	val	train	test	$model_3$
train	train	train	val	test	$model_4$

Which one to take among the four models?

A final model is the one trained based on:

train	train	train	train	test
-------	-------	-------	-------	------

What is next?

One important question:

Can DNNs be specialized?

CNNs: Image data

RNNs: Text/audio data (language) and any sequential data

Outline of Day 3 lectures

Focus on CNNs.

Specifically we will:

- 1. Investigate how CNNs were developed;
- Study the two key building blocks;
 Conv layer
 Pooling layer
- 3. Discuss popular CNN architectures.