Advanced techniques

Lecture 5

Changho Suh

September 28, 2021

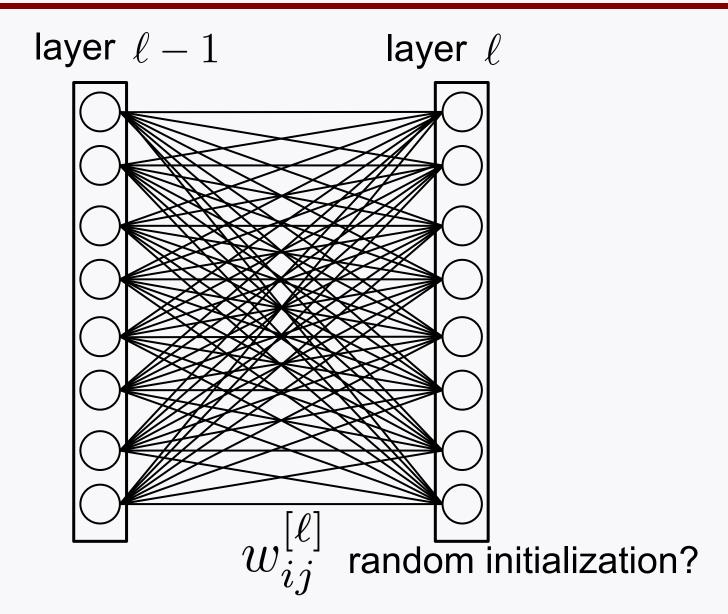
Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Weight initialization & techniques for training stability

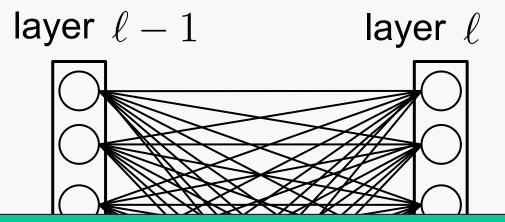
Outline

- Weight initialization
 Xavier's initialization
 He's initialization
- 2. Techniques for training stability Adam optimizer
 - Learning rate decaying
 - Batch normalization

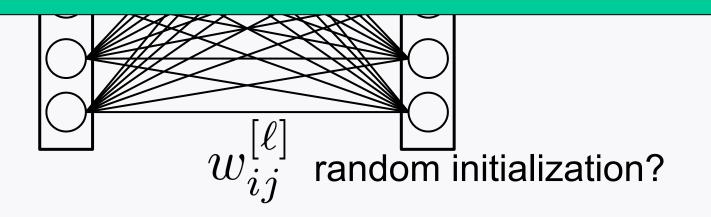
Xavier's initialization: Motivation



Xavier's initialization: Motivation



Turns out: With random initialization, a dynamic range of signals is boosted as the network gets deeper.



Xavier's initialization: Motivation

To see this "exploding problem", consider:

$$z_1^{[\ell]} = \sum_{j=1}^{n^{[\ell-1]}} w_{1j}^{[\ell]} a_j^{[\ell-1]}$$

A dynamic range of signals can be quantified via:

$$\operatorname{var}\left(z_{1}^{[\ell]}\right) = \operatorname{var}\left(\sum_{j=1}^{n^{[\ell-1]}} w_{1j}^{[\ell]} a_{j}^{[\ell-1]}\right)$$

Variance computation

$$\begin{aligned} \operatorname{var}\left(z_{1}^{[\ell]}\right) &= \operatorname{var}\left(\sum_{j=1}^{n^{[\ell-1]}} w_{1j}^{[\ell]} a_{j}^{[\ell-1]}\right) \\ &= \sum_{j=1}^{n^{[\ell-1]}} \operatorname{var}\left(w_{1j}^{[\ell]} a_{j}^{[\ell-1]}\right) \end{aligned}$$

Assumption:

(i) weights independent(ii) input independent(iii) weights/input ind.(iv) zero mean

$$=\sum_{j=1}^{n^{[\ell-1]}} \mathbb{E}\left[(w_{1j}^{[\ell]})^2 (a_j^{[\ell-1]})^2\right] - \sum_{j=1}^{n^{[\ell-1]}} \left(\mathbb{E}\left[w_{1j}^{[\ell]} a_j^{[\ell-1]}\right]\right)^2$$

Variance computation

j=1

$$\operatorname{var}\left(z_{1}^{[\ell]}\right) = \sum_{j=1}^{n^{[\ell-1]}} \mathbb{E}\left[\left(w_{1j}^{[\ell]}\right)^{2} (a_{j}^{[\ell-1]})^{2}\right] \begin{array}{l} \text{Assumption:} \\ \text{(i) weights independent} \\ \text{(ii) input independent} \\ = \sum_{j=1}^{n^{[\ell-1]}} \mathbb{E}\left[\left(w_{1j}^{[\ell]}\right)^{2}\right] \mathbb{E}\left[\left(a_{j}^{[\ell-1]}\right)^{2}\right] \begin{array}{l} \text{(iii) weights/input ind.} \\ \text{(iv) zero mean} \end{array} \\ = \sum_{j=1}^{n^{[\ell-1]}} \operatorname{var}\left(w_{1j}^{[\ell]}\right) \operatorname{var}\left(a_{j}^{[\ell-1]}\right) \end{array}$$

Exploding problem

$$\operatorname{var}\left(z_{1}^{\left[\ell\right]}\right) = \sum_{j=1}^{n^{\left[\ell-1\right]}} \operatorname{var}\left(w_{1j}^{\left[\ell\right]}\right) \operatorname{var}\left(a_{j}^{\left[\ell-1\right]}\right)$$

Suppose: var
$$\left(a_{j}^{\left[\ell-1\right]}
ight)=1,$$
 var $\left(w_{1j}^{\left[\ell\right]}
ight)=1$

Then: var
$$\left(z_1^{[\ell]}
ight)=n^{[\ell-1]}$$

As the network gets deeper, explode!

Xavier's initialization

$$\operatorname{var}\left(z_{1}^{[\ell]}\right) = \sum_{j=1}^{n^{[\ell-1]}} \operatorname{var}\left(w_{1j}^{[\ell]}\right) \operatorname{var}\left(a_{j}^{[\ell-1]}\right)$$

Suppose:
$$\operatorname{var}\left(a_{j}^{[\ell-1]}\right) = 1$$

Idea: Set
$$\operatorname{var}\left(w_{1j}^{[\ell]}\right) = \frac{1}{n^{[\ell-1]}}$$
$$\left(w_{ij}^{[\ell]} \text{ i.i.d. } \sim \mathcal{N}\left(0, \frac{1}{n^{[\ell-1]}}\right)\right)$$

9

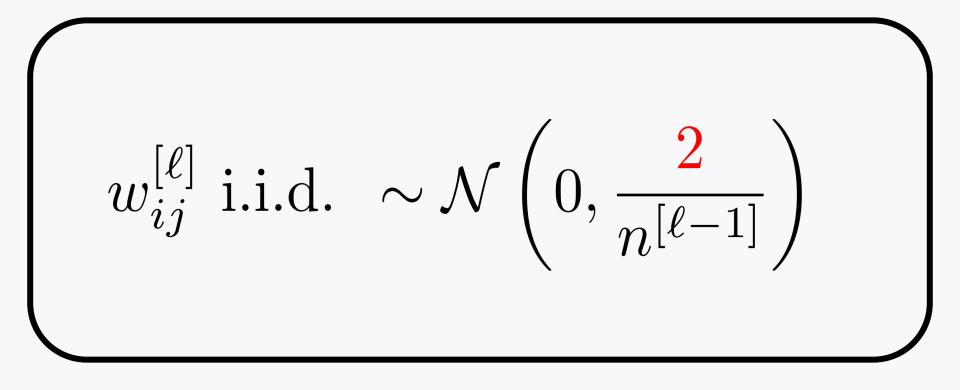
He's initialization: Motivation

$$a_1^{[\ell]} = \mathsf{ReLU}(z_1^{[\ell]})$$
$$= \max(0, z_1^{[\ell]})$$

$$\operatorname{var}\left(a_{1}^{\left[\ell\right]}\right) = \frac{1}{2}\operatorname{var}\left(z_{1}^{\left[\ell\right]}\right)$$

Xavier's initialization $w_{ij}^{[\ell]}$ i.i.d. $\sim \mathcal{N}\left(0, \frac{1}{n^{[\ell-1]}}\right)$ $\longrightarrow \operatorname{var}\left(a_1^{[\ell]}\right) = \frac{1}{2}\operatorname{var}\left(a_j^{[\ell-1]}\right)$

He's initialization

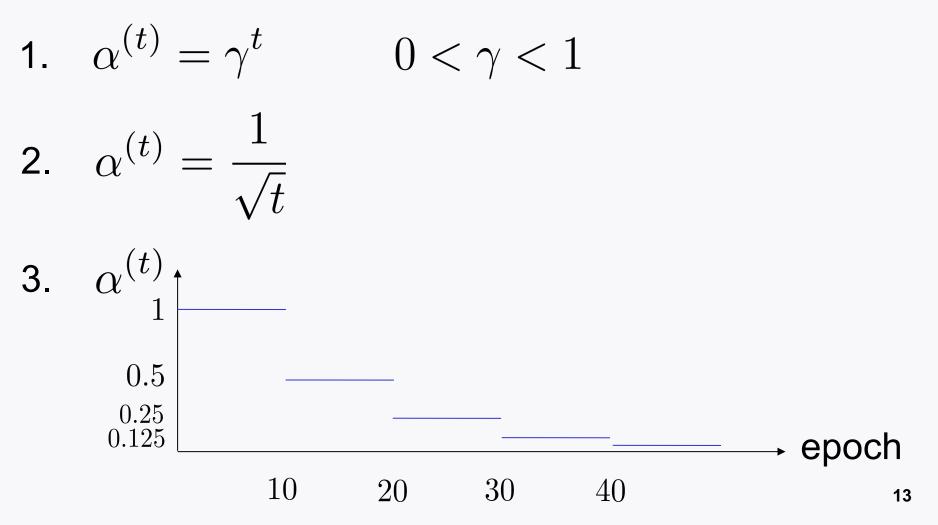


Techniques for training stability:

- Adam optimizer
- Learning rate decaying
- **Batch normalization**

Learning rate decaying

Three popular choices:



Batch normalization: Motivation

Turns out: Different signal scalings across distinct layers incur training instability.

One prominent way to address this:

Batch normalization

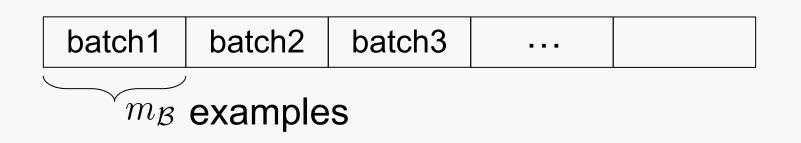
Batch

Recall the cost function used for gradient descent:

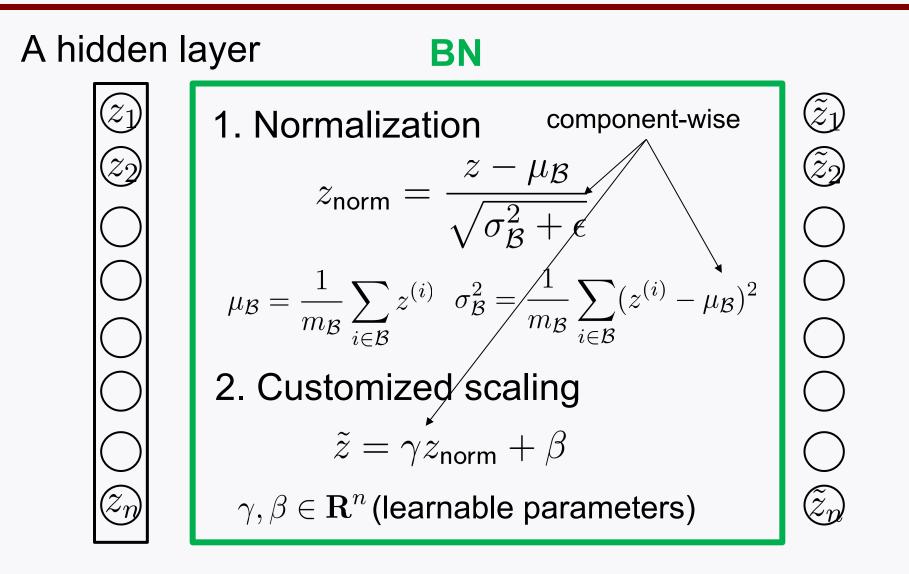
$$J(w^{(t)}) := \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log \hat{y}^{(i)} - (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Issue: Computationally heavy for a large *m*.

Hence: In practice, use a chunk of examples, called a *batch*.



Batch normalization



Look ahead

Will study:

hyperparameter search

cross validation