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Backpropagation

Adam optimizer
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Outline
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1.

Backpropagation

Study an efficient way of implementing gradient 

descent:

2.

Adam optimizer

Study a practical variant of gradient descent:
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Gradient descent for DNN 
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An efficient way of computing the two gradients: 

Backpropagation!
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Backpropagation
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Idea: Successively compute gradients in a backward

manner by using a chain rule for derivatives! 

Will provide a high-level explanation in a simple 

context: m=1.
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Backpropagation: m=1 
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Recall the forward path:
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Backpropagation: m=1 
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Start from backward:
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Backpropagation: m=1 
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Next consider:

compute from Chain rule:

from an earlier stage
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Backpropagation: m=1 

8

Next consider:

Chain rule:

from an earlier stage

compute from 
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Backpropagation: m=1 
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Next consider:

Chain rule:

from an earlier stage

compute from 
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Backpropagation: m=1 
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Next:

from an earlier stage

compute from 
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Backpropagation: m=1 
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Next:

from an earlier stage

compute from 
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Backpropagation: m=1 
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Mathematical formula: m=1
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See Appendix 1 for 

detailed derivation.
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Mathematical formula: General m
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See Appendix 2 for 

detailed derivation.
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Mathematical formula: L-layer DNN

2-layer DNN
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Algorithm in practice

Recall gradient descent:
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Computationally heavy for a large m.

Hence: Often use a part, called a batch.

batch1 batch2 batch3 …

examples
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Algorithm with batch
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Operation per batch is called “step”.

Operation per entire dataset is called “epoch”.

batch1 batch2 batch3 …

examples

joker1251
SGD는 배치사이즈를 1로 잡아가지고 하는 것인데

이게 왜 stochastic이냐 하냐면, 고르는 한개의 배치를 랜덤하게 뽑기 떄문이야.
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A challenge
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Note: Relies only on the current gradient

The weight update may oscillate too much. 

What we want is a “gradual (smooth) change”.

To this end: Often use a variant of GD that exploits 

past gradients.
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Momentum optimizer
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For a small t and a typical               :  

may incur unstable training

Hence: Apply “bias correction”.
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Momentum optimizer
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If                   is too big or too small:

Yields quite different scalings

Motivate to normalize 
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Another variation
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Called: Adam (Adaptive momentum) optimizer

component-wise square

component-wise

division/square-root

joker1251
Adam은 그래디언트가 너무 출렁거리는 것을 방지하기 위한 테크닉인데,

과거의 그래디언트와 현재의 계산된 그래디언트를 적절하게 섞어서 쓰는 방식이다.

적절하게 섞을 때 과거의 그래디언트와 현재의 그래디언트의 scaling 차이도 있을 것이기 때문에 분산으로 노말라이제이션 까지 해준다.

모멘텀 GD는 섞는 것만 하는 것이고
ADAM은 노말라이제이션까지 해주는 것
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Look ahead
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Will investigate advanced techniques.
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Appendix 1:

Backpropagation (m=1)
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Backpropagation: m=1 
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Recall the forward path:
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Backpropagation: m=1 
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Start from backward:
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Backpropagation: m=1 
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Next consider:

compute from 
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Backpropagation: m=1 
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Next consider:
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Backpropagation: m=1 
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Next consider:
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Backpropagation: m=1 
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Next consider:

component-wise multiplication
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Backpropagation: m=1 
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Next consider:
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Backpropagation: m=1 
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Appendix 2:

Backpropagation (general m)
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Backpropagation: General m
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Matrix notation helps:
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Backpropagation: General m
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Claim:
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Proof
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Proof
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Proof
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2-layer DNN with bias terms
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2-layer DNN with bias terms
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