Machine learning & deep learning basics

Lecture 2

Changho Suh

September 27, 2021

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Gradient descent and DNNs

Logistic regression

$$\min_{w} \sum_{i=1}^{m} \ell(y^{(i)}, f_w(x^{(i)}))$$

Employ: Perceptron w/ logistic function

CE loss:

$$\ell(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

Gradient descent

Gradient descent

(*t*+1)-*th* step:

Al boomed in 1960s but ...

Seymour Papert '69

Demonstrated limitations of the perceptron architecture.

 \rightarrow Led to the AI winter!

Al revived in 2012

Alex Krizhevsky

Ilya Sutskever

Geoffrey Hinton

Won the ImageNet competition in 2012!

Demonstrated: Deep neural networks can achieve human-level recognition performances!

Anchored the start of deep learning revolution!

Say: A neural network is deep if it has at least one layer btw input/output layers. hidden layer

Definition: A deep neural network is a network that contains hidden layer(s).

Convention: *L*-hidden-layer network = (L+1)-layer network

DNN architecture

DNN architecture

DNN architecture

DNN architecture: *L* hidden layers

$$a^{[1]} = \sigma^{[1]} \left(W^{[1]} x \right)_{x^{[1] \times n^{[1]} \times n^{[1]}}}^{\in \mathbf{R}^{n^{[1]} \times n}} \in \mathbf{R}^{n^{[1]}}$$
$$a^{[2]} = \sigma^{[2]} \left(W^{[2]} a^{[1]} \right) \in \mathbf{R}^{n^{[2]}}$$
$$\vdots$$
$$a^{[L]} = \sigma^{[L]} \left(W^{[L]} a^{[L-1]} \right) \in \mathbf{R}^{n^{[L]}}$$
$$\hat{y} = \sigma^{[L+1]} \left(W^{[L+1]} a^{[L]} \right) \in \mathbf{R}$$

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

DNN-based optimization

Optimization

Optimization

$$\min_{w} \sum_{i=1}^{m} \ell(y^{(i)}, \hat{y}^{(i)})$$

$$\hat{y}^{(i)} = \sigma^{[2]} \left(W^{[2]} a^{[1],(i)} \right)$$
$$a^{[1],(i)} = \sigma^{[1]} \left(W^{[1]} x^{(i)} \right)$$
$$w = (W^{[1]}, W^{[2]})$$

How to choose a loss function?

$$\min_{w} \sum_{i=1}^{m} \ell(y^{(i)}, \hat{y}^{(i)})$$

$$\hat{y}^{(i)} = \sigma^{[2]} \left(W^{[2]} a^{[1],(i)} \right)$$

$$a^{[1],(i)} = \sigma^{[1]} \left(W^{[1]} x^{(i)} \right)$$

 $w = (W^{[1]}, W^{[2]})$

Use a logistic function for $\sigma^{[2]}(z) = \sigma(z) := \frac{1}{1 + e^{-z}}$

Use cross entropy loss.

Optimization

$$\begin{split} & \min_{w} \sum_{i=1}^{m} -y^{(i)} \log \hat{y}^{(i)} - (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \\ & \hat{y}^{(i)} = \sigma \left(W^{[2]} a^{[1],(i)} \right) \\ & a^{[1],(i)} = \underline{\sigma}^{[1]} \left(W^{[1]} x^{(i)} \right) \quad \text{How to choose } \sigma^{[1]} (\cdot)? \\ & w = (W^{[1]}, W^{[2]}) \end{split}$$

Widely-used activation function

Operation at a neuron in the hidden layer:

Convex vs. non-convex?

$$\arg\min_{w=(W^{[1]},W^{[2]})}\sum_{i=1}^{m} -y^{(i)}\log\hat{y}^{(i)} - (1-y^{(i)})\log(1-\hat{y}^{(i)})$$

$$\hat{y}^{(i)} = \sigma\left(W^{[2]}\max\left(0, W^{[1]}x^{(i)}\right)\right)$$

Turns out: Objective function is non-convex.

A way to handle such non-convex problem?

Observation (by many practitioners):

Experimental results revealed that in most cases: Any local minimum is the global minimum!

Suggests a good way

Any local minimum is the global minimum!

Find *any stationary point (gradient =0)* and then take it as a solution.

Saddle points are unstable, so difficult to converge to.

How to find a stationary point then?

Via gradient descent!

Look ahead

Will explore details on gradient descent.