Machine learning & deep learning basics

Lecture 1

Changho Suh

September 27, 2021

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

1. Logistics

2. Machine learning & optimization

Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Logistics

Instructor and TAs

Instructor Changho Suh

N1-912, 042-350-7429 chsuh@kaist.ac.kr http://csuh.kaist.ac.kr

TAS

Jaewoong Cho **KAIST N1-920** 042-350-7529 cjw2525@kaist.ac.kr

Moonseok Choi KAIST N1-920 042-350-7529 ms.choi@kaist.ac.kr

Geewon Suh Minguen Kang **KAIST N1-920** KAIST N26-210 042-350-7529 042-350-8037 minkang23@kaist.ac.krgwsuh91@kaist.ac.kr

Kiwon Lee

KAIST N26-210

042-350-8037

Junhyung Ahn

KAIST N1-920

042-350-7529

Soobin Um **KAIST N1-920** 042-350-7529 kaiser5072@kaist.ac.kr tonyahn96@kaist.ac.kr sum@kaist.ac.kr **Dongjin Seo KAIST N1-920** 042-350-7529 dongjin.seo@kaist.ac.kr

6 week course

Weeks 1/2 (Days 1 ~ 10):

Lectures & practice sessions

Weeks 3/4/5/6 (Days 11 ~ 30):

Project!

Weeks 1/2

- 1. Machine learning & deep learning basics
- 2. Advanced techniques
- 3. CNN
- 4. RNN
- 5. Small-data technique I: Random Forests
- 6. Dimensionality reduction & clustering
- 7. Autoencoder & matrix completion
- 8. Generative models: GANs & RBMs
- 9. Small-data technique II: Semi-supervised learning etc.
- 10. Reinforcement learning

Weeks 3/4/5/6

Group	A Project!		Group B
수강생	부서/주제	양두희	차량컨셉개발팀 감가속도 활용한 서브마린 발생 판단
김규진	파워트레인열유동해석팀 HEV 엔진 성능특성 예측	어희재	인포테인먼트기획팀 맛집 추천
김영광	상용전자제어개발3팀 수소전기차 주행상황 분류 및 연료전지 최적화	위경수	샤시제어개발팀 댐퍼 누유 인지
김진하	엔진성능시험1팀 DPF 파손 방지를 위한 제어 로직 최적화	이성욱	안전시스템제어설계팀 실내 승객 클래스 판단
김치환	내비게이션개발팀 두개의 다른 DB를 매칭시켜주는 알고리즘	정진영	엔진선행개발팀 파워트레인 유입 공기량 예측
김형주	안전성능선행개발팀 수동운전자 모델링	조수호	전자전력제어개발 12V 배터리 충방전 예측
박상천	강판재료개발팀 HE (수소최성) 예측	주기형	전동화PT성능기술개발팀 주행패턴 개인화
박장호	공력개발팀 차량 압력분포 및 유동장 예측	최현우	인포테인먼트기획팀 음악청취이력 기반 추천

TA assignment

Group A

Group B

7

수강생	조교		양두희	이기원/ 서기원 /음수빈
김규진	강민근 /최문석/서동진		어희재	이기원/ 서기원 /음수빈
김영광	강민근 /최문석/서동진	-	위경수	이기원/서기원/ 음수빈
김진하	강민근/ 최문석 /서동진		이성욱	조제웅 /안준형
김치환	강민근/ 최문석 /서동진	;	정진영	조제웅 /안준형
김형주	강민근/최문석/ 서동진		조수호	조제웅/ 안준형
박상천	이기원 /서기원/음수빈	<u> </u>	주기형	강민근/최문석/ 서동진
박장호	이기원 /서기원/음수빈	:	최현우	조제웅/ 안준형

Week 3: Communication

Oct. 11: 대체공휴일

- Oct. 12: Proposal rehearsal with TAs Revise proposals
- Oct. 13: Proposal presentation I (Group A) Set up action items
- Oct. 14: Proposal presentation II (Group B) Set up action items
- Oct. 15: Checkpoint 1 Set up action items

Week 4: Model setup

Oct. 18: Reinforcement learning (대체공휴일로 연기된 강좌 진행)

Oct. 19: Checkpoint 2

Set up action items

- Oct. 20: Project 수행
- Oct. 21: Checkpoint 3 Set up action items
- Oct. 22: Checkpoint 4 Set up action items

Week 5: Improve model performance

- Oct. 25: Checkpoint 5
 - Set up action items
- Oct. 26: Project 수행
- Oct. 27: Checkpoint 6 Set up action items
- Oct. 28: Project 수행
- Oct. 29: Checkpoint 7 Set up action items

Week 6: Wrap-up & final presentation

- Nov. 1: Checkpoint 8
 - Set up action items
- Nov. 2: Project 수행
- Nov. 3: Checkpoint 9 Set up action items
- Nov. 4: Project 수행
- Nov. 5: Checkpoint 10 Final presentation preparation
- Nov. 8: Final presentation I (Group A)
- Nov. 9: Final presentation II (Group B)

How lectures proceed: Week 1

Day 1: Machine learning and deep learning basics

Lecture 1: 9:00 am ~ 10:00 am

Lecture 2: 10:10 am ~ 11:10 am

Lecture 3: 11:20 pm ~ 12:30 pm

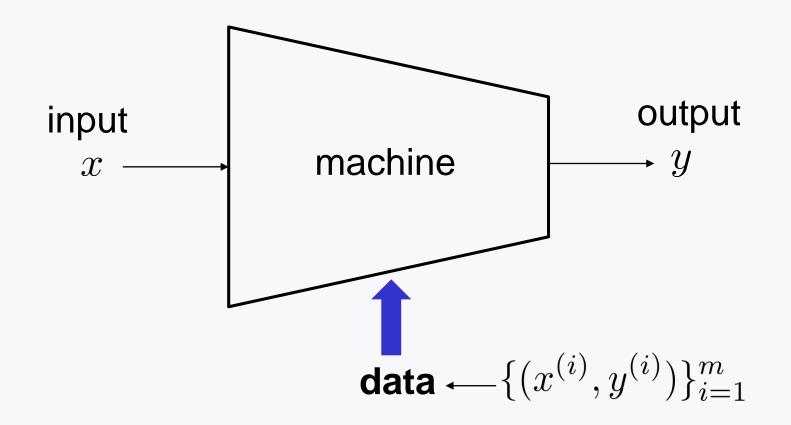
- PS 1: 1:30 pm ~ 2:30 pm
- PS 2: 2:40 pm ~ 3:40 pm
- PS 3: 3:50 pm ~ 5:00 pm

Same format for Days 2 ~ 10.

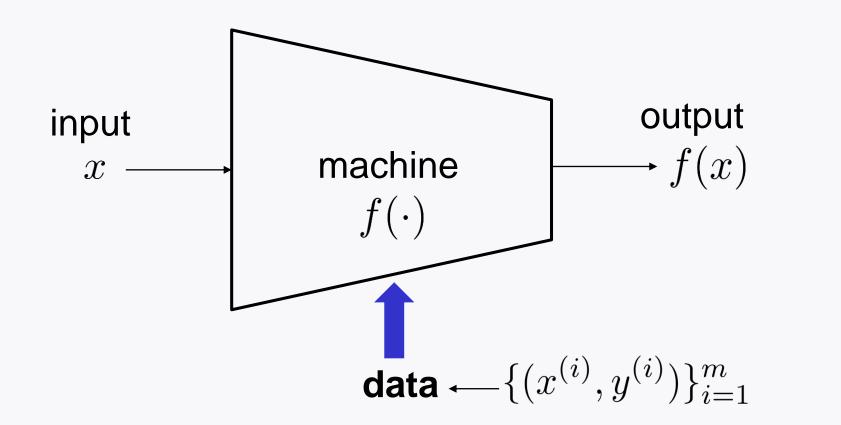
30 lectures & 30 PSs

References

1. Lecture Slides (LS)


2. Practice Session:

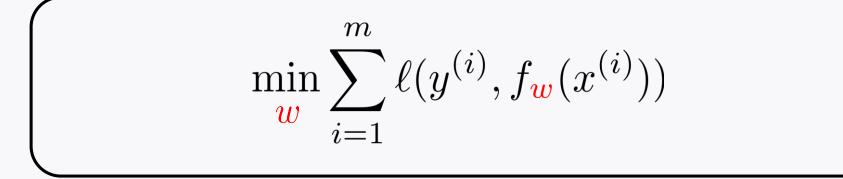
Slides & python code


Copyright © 2021 Changho Suh @ KAIST. All rights reserved.

Machine learning and optimization

Machine learning

Machine learning


Design an interested function using $\{(x^{(i)}, y^{(i)})\}_{i=1}^{m}$

Training via optimization!

$$\min_{\mathbf{f}} \sum_{i=1}^{m} \ell(y^{(i)}, \mathbf{f}(x^{(i)}))$$

Note: Function optimization!

Parameterization

Three prominent problems depending on a choice of function class & loss function:

- 1. Least Squares
- 2. Logistic regression
- 3. Deep learning

Least Squares

$$\min_{w} \sum_{i=1}^{m} \ell(y^{(i)}, f_w(x^{(i)}))$$

Employ: Perceptron w/o activation

$$f_w(x) = w^T x$$

A squared-error loss:

$$\ell(y, \hat{y}) = \|y - \hat{y}\|^2$$

Has the closed form solution.

But performance is not that great.

Logistic regression

$$\min_{w} \sum_{i=1}^{m} \ell(y^{(i)}, f_w(x^{(i)}))$$

Employ: Perceptron w/ the logistic function

Cross Entropy (CE) loss:

$$\ell(y, \hat{y}) = -y \log \hat{y} - (1-y) \log(1-\hat{y})$$

CE is the optimal loss function in a certain sense.

How to train LR?

Gradient descent!

Look ahead

Will study: Gradient descent.

Then move onto deep learning.